Vulnerabilities in High Assurance Boot of NXP i.MX microprocessors

This blog post provides details about two vulnerabilities found by Quarkslab's researchers Guillaume Delugré and Kévin Szkudłapski in the secure boot feature of the i.MX family of application processors [1] built by NXP Semiconductors.

The bugs allow an attacker to subvert the secure boot process to bypass code signature verification and load and execute arbitrary code on i.MX application processors that have the High Assurance Boot feature enabled. These bugs affect 12 i.MX processor families.

The vulnerabilities were discovered and reported to the vendor in September 2016 and the technical details included in this blogpost were disclosed in a joint Quarkslab-NXP presentation at the Qualcomm Mobile Security Summit 2017 [2] in May 19th, 2017. National computer emergency response teams (CERTs) from 4 countries were informed about the issues in March, 2017.

NXP has issued an Engineering Bulletin and two Errata documents (EB00854, ERR010872 and ERR0108873 respectively) [3] providing a brief description of both vulnerabilities, the list of affected processor models along with resolution plans and possible mitigations.

In the rest of the blogpost we describe the relevant features in i.MX processors and the vulnerabilities affecting them.

more ...





Exploiting MS16-145: MS Edge TypedArray.sort Use-After-Free (CVE-2016-7288)

On February 9, 2017, Natalie Silvanovich from Google Project Zero unrestricted access to P0's issue #983 [1], titled "Microsoft Edge: Use-after-free in TypedArray.sort", which got assigned CVE-2016-7288 and was patched as part of Microsoft security bulletin MS16-145 [2] during December 2016. In this blog post we discuss how I managed to exploit this UAF issue to obtain remote code execution on MS Edge.

more ...


Make Confide great again? No, we cannot

In recent weeks, Confide, a secure instant messaging application, has gained popularity in some circles. This article presents a quick assessment of the security of this application. The official website boasts the confidentiality provided by the product through three qualifiers: encrypted, ephemeral and screenshot protected. Each of these aspects will be studied.

The encryption protocol will be particularly detailed because it is tagged as battle tested, military grade cryptography. We already knew about military grade cryptography, which seems to be a synonym of put AES-256 somewhere, no matter how you use it in many applications, but we had never heard of battle tested cryptography. This article is an opportunity to present this technology.

Developing properly end-to-end communication systems is complex. As we have seen in the past with iMessage, even if cryptographic primitives are correctly implemented and encryption keys are correctly generated and protected, the design is critical to forbid the service operator from being able to eavesdrop messages.

more ...

Reverse Engineering Samsung S6 SBOOT - Part I

Various Samsung Exynos based smartphones use a proprietary bootloader named SBOOT. It is the case for the Samsung Galaxy S7, Galaxy S6 and Galaxy A3, and probably many more smartphones listed on Samsung Exynos Showcase [1]. I had the opportunity to reverse engineer pieces of this bootloader while assessing various TEE implementations. This article is the first from a series about SBOOT. It recalls some ARMv8 concepts, discusses the methodology I followed and the right and wrong assumptions I made while analyzing this undocumented proprietary blob used on the Samsung Galaxy S6.

more ...

Analysis of MS16-104: .URL files Security Feature Bypass (CVE-2016-3353)

On September 13th, 2016 Microsoft released security bulletin MS16-104 [1], which addresses several vulnerabilities affecting Internet Explorer. One of those vulnerabilities is CVE-2016-3353, a security feature bypass bug in the way .URL files are handled. This security issue does not allow for remote code execution by itself; instead, it allows attackers to bypass a security warning in attacks involving user interaction. In this blogpost we discuss the whole process, from reverse engineering the patch to building a Proof-of-Concept for this vulnerability.

more ...