
Reference 25-01-1969-REP
Version 1.1

Date 2025-02-05

Quarkslab SAS
10 boulevard Haussmann

75009 Paris
France

Allbridge Estrela

Stellar Audit Bank

1. Project Information
1.1. Document history

Version Date Details Authors
1.0 2025-01-17 Initial version Elouan Wauquier
1.1 2025-02-05 Corrected version fol-

lowing Allbridge’s feed-
back

Elouan Wauquier

1.2. Contacts

1.2.1. Quarkslab

Contact Role Email
Frédéric Raynal CEO fraynal@quarkslab.com
Pauline Sauder Project Manager psauder@quarkslab.com
Stavia Salomon Sales ssalomon@quarkslab.com
Elouan Wauquier R&D Security Engineer ewauquier@quarkslab.com

1.2.2. Client

Contact Role Email
Yuriy Savchenko CTO & Co-Founder ys@allbridge.io
Pavel Velykyi CBDO pv@allbridge.io

Ref.: 25-01-1969-REP 1 Quarkslab SAS

mailto:fraynal@quarkslab.com
mailto:psauder@quarkslab.com
mailto:ssalomon@quarkslab.com
mailto:ewauquier@quarkslab.com
mailto:ys@allbridge.io
mailto:pv@allbridge.io

Contents
1. Project Information . 1

1.1. Document history . 1
1.2. Contacts . 1

2. Executive Summary . 3
2.1. Context . 3
2.2. Objectives . 3
2.3. Methodology . 3
2.4. Findings Summary . 4
2.5. Conclusions . 4

3. Reading Guide . 5
3.1. Executive summary . 5
3.2. Metric definition . 5

4. Manual review of smart contracts . 7
4.1. Factory . 7
4.2. Pool . 9

A. Factory ABI . 15

B. Pool ABI . 16

Ref.: 25-01-1969-REP 2 Quarkslab SAS

2. Executive Summary
2.1. Context
Allbridge engaged with Quarkslab to perform a security audit of the smart contracts related to
Estrela, as defined in 25-01-2923-PRO. This product is a decentralized exchange for stablecoins
implemented as an Automated Market Maker (AMM).

Users of Allbridge Estrela can provide liquidity to pools of 2 or 3 tokens, and swap one of these
tokens for any other.

Quarkslab had already performed an audit of an earlier version of these smart contracts, with
support for only 2 tokens per pool.

The audit parameter was defined by the content of the following GitHub repository: allbridge-
io/dex-soroban-contracts at commit dd8d678b9012dc55624f16e1693ee77b048686cd.

2.2. Objectives
The objective of the audit is to ensure that, among other things:

• the pool invariant is maintained — notably, solutions to the invariant equation are correct
and well implemented;

• one cannot steal tokens from liquidity providers;
• liquidity providers cannot lose their liquidity, except for impermanent loss;
• one cannot manipulate rewards;
• one cannot prevent someone else from earning rewards or using the platform;
• one cannot generally abuse, take control, or drain smart contracts from Allbridge Estrela.

2.3. Methodology
Allbridge provided Quarkslab with the source code and tests for their smart contracts. To
assess their security, we first needed to familiarize ourselves with the project’s structure, and to
understand the key tasks outlined in the audit scope. We carefully reviewed the project resources
to gain a clear understanding of the features to be evaluated. Armed with this understanding,
we started reviewing the smart contracts, and conducted tests to confirm our findings.

Overall, the following steps were defined for the security audit:

1. Manual code review
• Identify the weaknesses and misbehaviors in the code, that could lead to vulnerabilities;
• Identify and exploit the vulnerabilities specific to smart contracts (reentrancy, frontrun-

ning, external contract calls, gas constraints…);
• Focus on critical functions and key aspects, including permissions, access control, logical

bugs, and erroneous computations;

Ref.: 25-01-1969-REP 3 Quarkslab SAS

https://github.com/allbridge-io/dex-soroban-contracts
https://github.com/allbridge-io/dex-soroban-contracts
https://github.com/allbridge-io/dex-soroban-contracts/tree/dd8d678b9012dc55624f16e1693ee77b048686cd
https://github.com/allbridge-io/dex-soroban-contracts/tree/dd8d678b9012dc55624f16e1693ee77b048686cd

• Check the implementation for best practices (e.g., critical condition validation, documen-
tation/specification, storage structure, trust assumptions…).

2. Unit and functional tests
• Ensure that the smart contract behaves as we understood it during step 1;
• Test the interactions with other smart contracts and users in realistic scenarios.

3. Report edition
• Write a report including the assessment methodology, findings and recommendations.

2.4. Findings Summary
During the time frame of the security audit, Quarkslab discovered only 1 issue considered as
low severity, and 3 issues considered informative.

Info

This report reflects the work and results obtained within the duration of the audit and on
the specified scope, as agreed between Allbridge and Quarkslab. Tests are not guaranteed
to be exhaustive, and the report does not ensure that the code is bug- or vulnerability-free.

ID Name Perimeter
LOW-2 First deposit can be backrun. Pool
INFO-1 Centralization risk for the administrator.
INFO-3 Token called twice on deposit. Pool

INFO-4 Generic calc_withdraw_amount() assumes a specific
missing index. Pool

2.5. Conclusions
To the best of our knowledge, the smart contract logic is sound, the implementation of the
StableSwap invariant is correct and cannot be exploited with the current parameter constraints.
The only security issue we found has low impact and only affects the first deposit.

Ref.: 25-01-1969-REP 4 Quarkslab SAS

3. Reading Guide
This reading guide describes the different sections present in this report and gives some insights
about the information contained in each of them and how to interpret it.

3.1. Executive summary
The executive summary Section 2 presents the results of the assessment in a non-technical
way, summarizing all the findings and explaining the associated risks. For each vulnerability, a
severity level is provided as well as a name or short description, and one or more mitigation,
as shown below.

ID Name Category
CRITICAL Vulnerability Name #1 Injection

HIGH Vulnerability Name #2 Remote code injection
MEDIUM Vulnerability Name #3 Denial of Service

LOW Vulnerability Name #4 Information leak

Each vulnerability is identified throughout this document by a unique identifier <LEVEL>-<ID> ,
where ID is a number and LEVEL the severity (INFO, LOW, MEDIUM, HIGH or CRITICAL). Every
vulnerability identifier present in the vulnerabilities summary table is a clickable link that leads
to the corresponding technical analysis that details how it was found (and exploited if it was
the case). Severity levels are explained in Section 3.2.

The executive summary also provides an action plan with a focus on the identified quick wins,
some specific mitigation that would drastically improve the security of the assessed system.

3.2. Metric definition
This report uses specific metrics to rate the severity, impact and likelihood of each identified
vulnerability.

3.2.1. Impact

The impact is assessed regarding the information an attacker can access by exploiting a
vulnerability but also the operational impact such an attack can have. The following table
summarizes the different levels of impact we are using in this report and their meanings in
terms of information access and availability.

Ref.: 25-01-1969-REP 5 Quarkslab SAS

CRITICAL Allows a total compromise of the assessed system, allowing an attacker to
read or modify the data stored in the system as well as altering its behavior.

HIGH
Allows an attacker to impact significantly one or more components, giving
access to sensitive data or offering the attacker a possibility to pivot and
attack other connected assets.

MEDIUM Allows an attacker to access some information, or to alter the behavior of the
assessed system with restricted permissions.

LOW Allows an attacker to access non-sensitive information, or to alter the behavior
of the assessed system and impact a limited number of users.

3.2.2. Likelihood

The vulnerability likelihood is evaluated by taking the following criteria in consideration:

• Access conditions: the vulnerability may require the attacker to have priviledged access,
or to have additional information.

• Required skills: an attacker may need specific skills to exploit the vulnerability.
• Known available exploit: when a vulnerability has been published and an exploit is

available, the probability a non-skilled attacker would find it and use it is pretty high.

The following table summarizes the different level of vulnerability likelihood:

CRITICAL The vulnerability is easy to exploit even from an unskilled attacker and has
no specific access conditions.

HIGH The vulnerability is easy to exploit but requires some specific conditions to
be met (specific skills or access).

MEDIUM The vulnerability is not trivial to discover and exploit, requires very specific
knowledge or specific access (internal network, physical access to an asset).

LOW The vulnerability is very difficult to discover and exploit, requires highly
specific knowledge or authorized access

3.2.3. Severity

The severity of a vulnerability is defined by its impact and its likelihood, following the following
table:

Impact

CRITICAL CRITICAL HIGH MEDIUM

CRITICAL HIGH HIGH MEDIUM

HIGH HIGH MEDIUM LOW
Likelihood

MEDIUM MEDIUM LOW LOW

Ref.: 25-01-1969-REP 6 Quarkslab SAS

4. Manual review of smart contracts
The codebase’s central smart contract is that of a decentralized exchange pool for stablecoins,
designed as an Automated Market Maker (AMM) using CurveFinance’s StableSwap invariant.
It is defined generically over the number of supported tokens, and 2 specialized implementations
are provided: one for 2-tokens pools, and another for 3-tokens pools.

A factory is also defined to deploy the pool instances.

Description Crate path
Utility and shared definitions, complementing the Soroban SDK. common/shared

Procedural macros for the above definitions. common/proc_macros

Generic definition of an Automated Market Maker (AMM), with a
procedural macro for specialization.

common/generic_pool

Storage and authentication of the administrator’s address. common/storage

Factory smart contract to deploy pool instances. contracts/factory

Specialization of the generic pool for 2 tokens. contracts/two_pool

Specialization of the generic pool for 3 tokens. contracts/three_pool

Table 1: The codebase’s file structure.

4.1. Factory
The factory contract lets its administrator deploy and initialize pools for a pair or triplet of
tokens.

4.1.1. Storage

Storage structures are defined with custom procedural macros, handling storage location, key,
and time to live (TTL) extension. TTL extension is performed automatically on access.

Key Location Structure
Constant Instance struct Admin(Address)

Constant Instance

struct FactoryInfo {
 two_pool_wasm_hash: BytesN<32>,
 three_pool_wasm_hash: BytesN<32>,
 pools: Map<Vec<Address>, Address>,
}

Note that all storage variables are located in Instance, including the list of pools. However,
since this list is capped (to MAX_PAIRS_NUM = 21), the factory Instance storage cannot become
too expensive.

Ref.: 25-01-1969-REP 7 Quarkslab SAS

https://berkeley-defi.github.io/assets/material/StableSwap.pdf

4.1.2. Functionality

The factory’s Application Binary Interface (ABI) is given in Appendix A.

4.1.2.1. Initialization

The factory’s initialize() function can only be called when the FactoryInfo structure in
Instance storage does not exist. Since the TTL of the contract instance and all globals are tied
together, there is no risk this field expires before the contract instance.

Anyone can call this function, but it can be called only once overall. It configures the adminis-
trator of the smart contract and initializes the FactoryInfo.

4.1.2.2. Configuration

At any time, the administrator can modify the implementation of the factory itself
(using upgrade()), or that of future deployed pools (using update_two_pool_wasm_hash() or
update_three_pool_wasm_hash()). They can also transfer their administrative rights to another
address with set_admin().

We did not find any issue with the implementation of these functions.

4.1.2.3. Pool creation

The administrator can call create_pool() with an Vec of 2 or 3 tokens, and the pool’s initial
configuration.

The factory checks all input parameters, sorts the tokens to avoid creating a duplicate pool,
and deploys the pool at with a salt depending on itself and the token Vec.

It then initializes the pool with the provided parameters.

Ref.: 25-01-1969-REP 8 Quarkslab SAS

4.2. Pool
The pool is an Automated Market Maker (AMM) using CurveFinance’s StableSwap invariant.
It holds liquidity and provides a market price for N stablecoins.

Liquidity Providers (LPs) mint virtual LP tokens when providing liquidity, representing their
share of the pool’s balance. These tokens are not fully fledged tokens (e.g. non-transferable).
They are burnt when the corresponding liquidity is withdrawn.

Users can swap one stablecoin for another at any time, following the invariant. A fee is paid to
LPs when swapping or withdrawing liquidity. An admin fee is also taken on that fee.

4.2.1. Storage

Storage structures are defined with custom procedural macros, handling storage location, key,
and TTL extension. TTL extension is performed automatically on access.

The SizedAddressArray, SizedU128Array, and SizedDecimalsArray types are simply wrappers
around Vec<Address>, Vec<u128>, and Vec<u32> (respectively) with a usize index instead of u32,
and an impl Deref.

Key Location Structure Comments
Constant Instance struct Admin(Address)

Constant Instance

struct PoolInfo {
 a: u128,
 fee_share_bp: u128,
 admin_fee_share_bp: u128,
 total_lp_amount: u128,
 tokens: SizedAddressArray,
 tokens_decimal:
SizedDecimalArray,
 token_balances:
SizedU128Array,
 acc_rewards_per_share_p:
SizedU128Array,
 admin_fee_amount:
SizedU128Array,
}

• a is the amplification factor 𝐴
in the invariant equation;

• total_lp_amount corresponds
to 𝐷 in the invariant equation;

• fees have a precision of 0.01%;
• the 5 arrays have a length of N

and index tokens in a Structure
of Array (SoA) layout;

• the accumulated rewards
should be excluded from
token_balances.

Address Persistent

struct UserDeposit {
 lp_amount: u128,
 reward_debts:
SizedU128Array,
}

• reward_debts keeps track of
the claimed rewards.

4.2.2. Functionality

The pool’s Application Binary Interface (ABI) is given for reference in Appendix B.

Ref.: 25-01-1969-REP 9 Quarkslab SAS

https://berkeley-defi.github.io/assets/material/StableSwap.pdf
https://en.wikipedia.org/wiki/AoS_and_SoA
https://en.wikipedia.org/wiki/AoS_and_SoA
https://en.wikipedia.org/wiki/AoS_and_SoA
https://en.wikipedia.org/wiki/AoS_and_SoA
https://en.wikipedia.org/wiki/AoS_and_SoA

4.2.2.1. Initialization

The pool’s initialize() function can only be called when the PoolInfo structure in Instance
storage does not exist. Since the TTL of the contract instance and all globals are tied together,
there is no risk this field expires before the contract instance.

Anyone can call this function, but it can be called only once overall. It configures the adminis-
trator of the smart contract and initializes the PoolInfo.

The fees are capped to a maximum of 100% (more would be nonsensical). 𝐴 is capped to
60 to avoid overflows in computations. The tokens’s decimals are retrieved by calling the
tokens directly at initialization time. Note that no liquidity is present in the pool just after
initialization.

Info

The initialize() function should be called first, and the contract should not be used unless
a trusted party has called this function successfully. When the factory creates a new pool,
this function is automatically called.

4.2.2.2. Configuration

At any time, the administrator can modify the pool’s fees (up to 100%) using set_fee_share()
or set_admin_fee_share(); or transfer the administrative rights to another address with
set_admin(). Since they can also upgrade the smart contract, they can also alter any aspect
of it.

INFO-1 Centralization risk for the administrator.

Prerequisite Admin role

The pool and factory smart contracts have an Admin address with privileged rights to
perform administrative tasks, such as code upgrade. The administrator needs to be trusted
not to perform malicious upgrades. A malicious upgrade of the pool contract’s code can
allow an administrator to steal the LPs’s funds.

Governance mechanisms are outside the scope of this audit, so we could not assign a severity
score. Allbridge already acknowledged the issue during our last audit with them.

Recommendation

Consider limiting the amount of trust allocated to the administrator. The finding can be
mitigated in several ways, such as delegating the Admin role to a Decentralized Autonomous
Organisation (DAO), or to a multi-signature wallet.

The administrator can also claim their administrator rewards with claim_rewards().

We did not find any issue with the implementation of these functions.

Ref.: 25-01-1969-REP 10 Quarkslab SAS

4.2.2.3. Deposit

When providing liquidity, the user sends tokens to the pool and mints LP tokens in exchange.
The amount of LP tokens minted is the difference between the theoretical value of 𝐷 after
the deposit, and its stored value before the deposit (in total_lp_amount). After the deposit,
total_lp_amount is thus equal to its theoretical value.

The first deposit (when there is no liquidity) needs to be an equal amount of each tokens.

LOW-2 First deposit can be backrun.

Likelihood Impact

Prerequisite Depegged token

After the first deposit, the pool has the same amount of each token, thus it considers all
tokens to have the exact same value. In case one (or more) stablecoin(s) is not at its peg, the
gap with its peg can be arbitraged by backrunning the first deposit, causing impermanent
loss to the LP.

Under normal circumstances, a large price difference is unlikely for stablecoins since they
are supposed to represent the same value.

Recommendation

Allow the initial deposit to be imbalanced, within a reasonable tolerance.

When updating the user’s deposit, their rewards are automatically claimed, and the
reward_debts field is updated with the additional LP tokens. This prevents the newly acquired
LP tokens to earn past rewards.

INFO-3 Token called twice on deposit.

When depositing tokens, the smart contract first calls each token to receive the provided
amount. Then, it calls each token a second time to send the accumulated rewards. On top
of consuming more gas, this can prevent a user from providing the maximum liquidity they
can in a single transaction.

Note that both calls are combined when withdrawing tokens.

Recommendation

Combine both calls into one.

Ref.: 25-01-1969-REP 11 Quarkslab SAS

4.2.2.4. Withdraw

When withdrawing liquidity, the user burns their LP tokens and receives the corresponding
share of each token. A fee is applied on all tokens.

When updating the user’s deposit, their rewards are automatically claimed, and the
reward_debts field is updated with the new balance.

The exact amount to withdraw is computed in the calc_withdraw_amount() function. This
function considers that the withdrawn amount depends linearly on the share of LP tokens,
except for the second least valuable token, which is computed from the invariant.

INFO-4 Generic calc_withdraw_amount() assumes a specific missing index.

The generic implementation of calc_withdraw_amount() takes a (specific) parameter called
y_indexes, which dictates which tokens are considered in the invariant computation. For
example, it is &[0] in the case of two_pool, and &[0, 2] in the case of three_pool (notice
the missing 1 in both cases). However, the function assumes that 1 is always the missing
index:

common/generic_pool/src/utils.rs Rust
90 token_amounts_sp[1] = pool.token_balances().get(indexes[1]) - y;

Recommendation

Only give the index to solve the invariant for as a parameter, and dynamically compute
the other ones from N.

4.2.2.5. Swap

When swapping one token for another, the pool computes the amount to receive by solving the
invariant equation. It is possible to send the output token to any address.

Fees are taken from the output token.

4.2.2.6. Rewards

The pool collects two types of fees:
• regular fees (configured in Pool::fee_share_bp): a percentage of the output token in swaps,

and every token in withdrawals.
• administrator fees (configured in Pool::admin_fee_share_bp): a percentage of the regular

fees.

The fees can be set by the administrator to any value in [0%, 100%) with increments of 0.01%.

Administrator fees accumulate in Pool::admin_fee_amount, which is reset to 0 when the admin-
istrator collects the fee by calling claim_admin_fee().

Liquidity provider fees accumulate in PoolInfo::acc_rewards_per_share_p. When a liquidity
provider claims their fee with claim_rewards() (or with deposit() or withdraw()), the total

Ref.: 25-01-1969-REP 12 Quarkslab SAS

amount they are entitled to is saved in their UserDeposit::reward_debts, and cannot be claimed
again.

Rewards are tracked separately for each tokens, so that variations in the pool’s balance does
not impact past rewards.

4.2.2.7. Solving the invariant

CurveFinance’s StableSwap invariant is defined as

𝐴𝑛𝑛 ∑𝑥𝑖 +𝐷 = 𝐴𝐷𝑛𝑛 + 𝐷𝑛+1

𝑛𝑛 ∏𝑥𝑖
,

where
• 𝑥𝑖 are the token balances, for 𝑖 ∈ ⟦1, 𝑛⟧;
• 𝐷 is “the total amount of coins when they have an equal price”;
• 𝐴 is an “amplification coefficient” akin to a leverage when the pool is balanced. When the

pool is imbalanced, it loses its power and leverage decreases. The actual “leverage” value is
𝜒 = 𝐴∏𝑥𝑖

(𝐷/𝑛)𝑛 , with ∏𝑥𝑖 = (𝐷
𝑛)𝑛 when the pool is balanced. 𝐴 should be tuned according to

the expected liquidity and volatility of the tokens.

All functions need to maintain this invariant at least (i.e., rounding and fees should only increase
its value).

Note

We evaluated the mathematical functions for correctness and paid attention to the following
details:
• The smart contract is compiled with profile.release.overflow-checks = true, thus

arithmetic operations may crash the smart contract.
• Even with the above flag set, ethnum::U256 overflows silently (i.e. wraps), even in release

mode.
• The logical shift operators >> and << are exempt from overflow checks. This has no

impact for right shifts but may cause unwanted overflows for left shifts.
• Values are not real integers. Rather, they are fixed point numbers with a decimal count

of SYSTEM_PRECISION = 3. Multiplications, divisions and roots can affect the dimension
of these numbers.

Allbridge implements the invariant solutions for 𝑛 = 2 and 𝑛 = 3 tokens.

Two functions provide solutions to the invariant equation:
• get_d() solves for 𝐷 given 𝑥𝑖, and
• get_y() solves for one 𝑥𝑖 given 𝐷 and the other 𝑥𝑖.

The 2-tokens pool provides an analytical solution to both functions, using Cardano’s formula
for get_d() and the quadratic formula for get_y().

The 3-tokens pool provides an analytical solution to get_y(). For get_d(), the invariant equation
is a 4-th degree polynomial.

Ref.: 25-01-1969-REP 13 Quarkslab SAS

https://berkeley-defi.github.io/assets/material/StableSwap.pdf
https://en.wikipedia.org/wiki/Cubic_equation#Cardano's_formula
https://en.wikipedia.org/wiki/Quadratic_formula

The pool performs a search using Newton’s method, with the stopping condition 𝑓 < 𝑑𝑓 ⟺
𝑓
𝑑𝑓 < 1, corresponding to the point where no further improvement can be made given the
precision.

The initial guess is ∑𝑥𝑖, which is a good guess in this context since it is the value of 𝐷 when the
pool is balanced. The function can be expressed in the form 𝑓(𝐷) = −𝐷4 − 𝑝𝐷+ 𝑞, with 𝑝 >
0, and 𝑞 > 0. It thus has two real roots, one positive and one negative. Because it is continuous,
has no inflection point, and its extremum is negative, it is guaranteed to converge to the positive
root monotonically. With 𝑞 ≠ 0, the positive root has multiplicity one, so the convergence rate
is quadratic. 𝐴 ≠ 0 ⟹ 𝑑𝑓 ≠ 0, so 𝑓

𝑑𝑓 cannot panic.

We did not find a way to exploit the implementation of these functions, given the constraints
on 𝐴 and 𝐷 (MAX_A and MAX_TOKEN_BALANCE).

Ref.: 25-01-1969-REP 14 Quarkslab SAS

https://en.wikipedia.org/wiki/Newton%27s_method

A. Factory ABI
The Application Binary Interface (ABI) is defined in contracts/factory/src/contract.rs.
Every public function extends the instance’s time to live (TTL), except those that do not
modify the state (the so-called “view” functions), initialize() and upgrade().

Signature Access control Immutable
initialize(
 two_pool_wasm_hash: BytesN<32>,
 three_pool_wasm_hash: BytesN<32>,
 admin: Address,
)

Only once ✗

create_pool(
 deployer: Address,
 pool_admin: Address,
 a: u128,
 tokens: Vec<Address>,
 fee_share_bp: u128,
 admin_fee_share_bp: u128,
)

admin ✗

set_admin(
 new_admin: Address,
)

admin ✗

update_two_pool_wasm_hash(
 new_wasm_hash: BytesN<32>,
)

admin ✗

update_three_pool_wasm_hash(
 new_wasm_hash: BytesN<32>,
)

admin ✗

upgrade(
 new_wasm_hash: BytesN<32>,
)

admin ✗

pool(
 tokens: Vec<Address>,
)

✓

pools() ✓
get_two_pool_wasm_hash() ✓
get_three_pool_wasm_hash() ✓
get_admin() ✓

Ref.: 25-01-1969-REP 15 Quarkslab SAS

B. Pool ABI
The Application Binary Interface (ABI) is defined by the generic procedural macro
generate_pool_contract. Every public function extends the instance’s time to live (TTL),
except those that do not modify the state (the so-called “view” functions), initialize() and
upgrade().

Signature Access control Immutable
initialize(
 admin: Address,
 a: u128,
 tokens: Vec<Address>,
 fee_share_bp: u128,
 admin_fee_share_bp: u128,
)

Only once ✗

deposit(
 sender: Address,
 amounts: Vec<u128>,
 min_lp_amount: u128,
)

sender ✗

withdraw(
 sender: Address,
 lp_amount: u128,
)

sender ✗

swap(
 sender: Address,
 recipient: Address,
 amount_in: u128,
 receive_amount_min: u128,
 token_from: Token,
 token_to: Token,
)

sender ✗

claim_rewards(
 sender: Address,
)

sender ✗

claim_admin_fee() admin ✗
set_admin(
 new_admin: Address,
)

admin ✗

set_admin_fee_share(
 admin_fee_share_bp: u128,
)

admin ✗

set_fee_share(
 fee_share_bp: u128,
)

admin ✗

admin ✗

Ref.: 25-01-1969-REP 16 Quarkslab SAS

Signature Access control Immutable
upgrade(
 new_wasm_hash: BytesN<32>,
)

pending_rewards(
 user: Address,
)

✓

get_pool() ✓
get_user_deposit(
 user: Address,
)

✓

get_d() ✓
get_receive_amount(
 input: u128,
 token_from: Token,
 token_to: Token,
)

✓

get_send_amount(
 output: u128,
 token_from: Token,
 token_to: Token,
)

✓

get_withdraw_amount(
 lp_amount: u128,
)

✓

get_deposit_amount(
 amounts: Vec<u128>,
)

✓

get_admin() ✓

Ref.: 25-01-1969-REP 17 Quarkslab SAS

	Project Information
	Document history
	Contacts
	Quarkslab
	Client

	Executive Summary
	Context
	Objectives
	Methodology
	Findings Summary
	Conclusions

	Reading Guide
	Executive summary
	Metric definition
	Impact
	Likelihood
	Severity

	Manual review of smart contracts
	Factory
	Storage
	Functionality
	Initialization
	Configuration
	Pool creation

	Pool
	Storage
	Functionality
	Initialization
	Configuration
	Deposit
	Withdraw
	Swap
	Rewards
	Solving the invariant

	Factory
	Pool

