
XCM: Cross-Consensus Messaging Audit

Technical audit report prepared for Parity

Reference 21-12-908-REP
Version 1.0

Date 2022/01/31

Quarkslab SAS
13 rue Saint Ambroise

75011 Paris
France

Contents

1 Project Information 1

2 Executive Summary 2
2.1 Disclaimer . 2
2.2 Findings summary . 2

3 Context and Scope 4
3.1 Context . 4
3.2 Safety and Security Properties . 4
3.3 Scope . 4
3.4 Methodology . 5
3.5 Audit Settings . 6
3.6 Polkadot-launch configuration . 6

4 XCM pallet 7
4.1 Pallet XCM . 7
4.2 Pallet Configuration . 11

5 XCM Runtime Configuration 14
5.1 AssetTransactor . 14
5.2 OriginConverter . 15
5.3 IsReserve and IsTeleporter . 16
5.4 LocationInverter . 16
5.5 Barrier . 17
5.6 Weigher . 18
5.7 Trader . 18
5.8 ResponseHandler . 20
5.9 AssetTrap and AssetClaims . 23
5.10 SubscriptionService . 23

6 XCM Executor 24
6.1 Arithmetic Operations . 25
6.2 Version Negotiation . 26
6.3 Dynamic Testing . 29
6.4 Origin and execution privileges . 31

7 Asset Transfer 35
7.1 Withdraw and Deposit . 35
7.2 Teleport and Reserve Transfers . 36

8 Conclusion 41

Glossary 42

Acronyms 43

Bibliography 44

A Message Types 45

B XCM Types 46

1 Project Information

Document history
Version Date Details Authors
1.0 2022/01/31 Initial Version Robin David, Mahé Tardy

Quarkslab
Contact Role Contact Address

Frédéric Raynal CEO fraynal@quarkslab.com

Stavia Salomon Sales Manager ssalomon@quarkslab.com

Robin David R&D Engineer rdavid@quarkslab.com

Mahé Tardy R&D Engineer mtardy@quarkslab.com

Parity
Contact Role Contact Address

Benjamin Weiss Director of Ecosystem Success benjamin.weiss@parity.io

Shawn Tabrizi Runtime Engineering Lead shawn@parity.io

Keith Yeung Core Runtime Developer keith.yeung@parity.io

Ref: 21-12-908-REP 1 Quarkslab SAS

2 Executive Summary

This report describes the results of the security evaluation made by Quarkslab of the Cross-
Consensus Messaging (XCM) mechanism developed by Parity for the Kusama/Polkadot blockchain.
This message exchange format is the cornerstone of cross-chain communications between a relay
chain and parachains, but also between parachains.

The main components to review are the XCM pallet and the XCM executor unleashing cross chain
communications on a Polkadot network of chains. Parity provides multiple reference XCM pallet
configurations for existing chains like Kusama Polkadot, Statemine, Westend etc. They are shared
between the polkadot and cumulus projects. The audit focuses more specifically on the two base
configurations (Kusama/parachain-template) and also more specifically on XCMv2 which is the
latest version of the format.

The audit aims at checking the XCM implementation ensuring fairness between parachains
and preventing any availability or consensus security issue. The main threats considered were:
introducing inconsistencies between chain states, misconfigurations enabling unwanted asset
transfers and asset discrepancies between chains.

This evaluation is the second audit performed on XCM, the first iteration having been performed
by another audit company. The evaluation was carried by two auditors for a duration of 50 days.
No major vulnerability has been found. Consequently, the report highlight the inner-working
of XCM and security related intricacies making the code robust against aforementioned issues.
Some design notes are described in the findings, see Section 2.2.

2.1 Disclaimer

This report reflects the work and results obtained within the duration of the audit on the specified
scope (see. Section 3.3). Tests are not guaranteed to be exhaustive and the report does not
ensure the code to be bug-free.

The security of XCM relies essentially on the used configuration parameters. As the audit focuses
on the provided base configurations, any parachain changing these parameters exposes itself
to security related issues. Regarding that, adaptating XCM behavior to the business logic of a
parachain shall be done with extreme care.

2.2 Findings summary

Table 2.2 summarizes remarks and worth mentioning aspects of XCM behavior encountered
during the course of the audit. They are detailed in the appropriate sections of the report. During
the audit, some issues were in the process of being fixed, but no additional security-related issues
have been found. Some warning blocks are also present in the sections of the report and highlight
some potential issues or dangers.

Ref: 21-12-908-REP 2 Quarkslab SAS

ID Description Recommendation Impact

INF01
timeout defined in QuerySta-
tus::Pending is unused.

Check that timeout is lower than
the current_block_number in on_-
response.

Info

INF02
On reception of answers for a pend-
ing query, check that the response
type is what was expected is impos-
sible.

Keep the expected response type in
Queries and check that the type is
correct on reception.

Info

INF03
Implicit link between expect-
ing_response() and AllowKnown-
QueryResponses barrier.

Moving expecting_response() in
the QueryResponse instruction han-
dler of process_instruction.

Info

Ref: 21-12-908-REP 3 Quarkslab SAS

3 Context and Scope

3.1 Context

As part of the Polkadot network deployment and the parachain slot auction process, Parity Tech
aims at auditing its XCM component. It enables message exchanges between any chains on the
network. This components will enable fungible and non-fungible asset transfer between chains
as well as any call to foreign extrinsics.

XCM aims at transparently ensuring the consistency and finality between chains (i.e., an asset can-
not be rolled-back on a chain while being considered final on the other chain) while also ensuring
fairness between chains. Core abstraction principles are detailed by the Web3 Foundation [1].
Short and mid-term prospective overview in Polkadot are detailed by Gavin Wood [2].

3.2 Safety and Security Properties

In addition to security properties provided by the blockchain, a cross-chain communication
mechanism introduces cross-consensus issues. Hopefully parachains are not fully independent
and uses the consensus mechanism of the underlying relay chain. The block time can vary so
there are no 1:1 block correspondance between relay chain and parachains. Yet the parachain
mechanism ensures a perfect lineage tracking between relay chain and parachain blocks. Derived
from such communication mechanism, main security properties that must hold are the following:

• finality: asset transfered, or teleported from one chain to another, must ensure the correct
lock/unlock or burn/mint on their respective chains;

• fairness: each parachain must have an equal chance to communicate with the relay chain
or another parachain.

The considered security model takes into account a misbehaving parachain, or one actively
behaving in an adversarial manner against the relay or another parachain. Also, all extrinsics
triggered by users are considered untrustworthy.

XCM messages can be emitted in two manners. First, they can directly be submitted by users via
the XCM pallet. Otherwise, they can be emitted by the chain itself by means of executing another
extrinsic. These two vectors are considered in this study and further described in Section 4.1.

3.3 Scope

The audit involves different software components scattered over different projects. The main
component is Substrate1, the base framework for building a standalone Proof-Of-Stake (PoS)
blockchain. It provides base pallets to perform the main actions of a blockchain. Atop, Polkadot2

provides additional features to build a network of chains through the parachain mechanism. It

1https://github.com/paritytech/substrate
2https://github.com/paritytech/polkadot

Ref: 21-12-908-REP 4 Quarkslab SAS

https://github.com/paritytech/substrate
https://github.com/paritytech/polkadot

provides the XCM pallet. Then the Cumulus project3 uses both of these projects and implements
core functionalities of a parachain pluggable on a relay chain. The XCM behavior is configured
differently by a relay chain and a parachain. The audit scope focuses on the following components
and use-cases:

• relay chain XCM configuration in the Polkadot project

• parachain XCM configuration in Cumulus

• whole XCM pallet in Polkadot project

• asset transfers, reserve transfers, teleport transfers

• DMP, UMP, HRMP queue handling on the relay chain

• version negotiation

Some use-cases of XCM are yet to be implemented or already considered legacy. As such the audit
leaves out-of-scope the following components:

• scale encoding/decoding

• XCM v0 and v1. While remaining present (and some types used), future parachains are
meant to strictly forbid legacy XCM versions. As such the focus has been given to v2.

• plurality, and governance delegated to a parachain

• usage of XCM for relay-to-relay communications

• benchmark/weight computation

3.4 Methodology

The XCM pallet audit methodology has roughly been divided into the following steps:

• code and implementation discovery

• network configuration with 1 parachain (see Section 3.5 below)

• static code review (XCM executor, runtime configuration in polkadot and cumulus etc.)
This includes covering the following aspects:

– logic bugs in implementation and race-conditions (e.g: between extrinsics)

– “costless-storage”: storage not properly weighted (e.g: no existential deposit)

– “costless-computation”: improperly weighted extrinsic costs

– usage of unsafe code constructs (e.g: unsafe arithmetic, potential panics, unwraps)

• dynamic testing of RC-PC, PC-PC communications

• report writing

3https://github.com/paritytech/cumulus

Ref: 21-12-908-REP 5 Quarkslab SAS

https://github.com/paritytech/cumulus

3.5 Audit Settings

As the XCM codebase is undergoing significant changes thanks to a prior audit perfomed on it,
versions used for the audit have been frozen in accordance with the Parity team. Especially, the
version of Polkadot and Cumulus have been fixed. For both of these projects the used reference
chain specification is respectively Kusama and Statemine. Exact versions and commit-id are
shown respectively in Table 3.1 and Table 3.2. From the specificed commit hashes, the two
binaries were compiled and small modifications were applied to the Polkadot binary to reduce
the EPOCH_DURATION_IN_SLOTS constant from 1*HOURS to 2*MINUTES to make the registration
of the parachain faster for the Kusama runtime.

Project Polkadot

Repository https://github.com/paritytech/polkadot

Commit hash 7d8f00b90cd6d87780123b3e08ca120cfb0c6e50

Commit date 2021/12/02

Chain-spec Kusama

Runtime v0.9.13 (runtime 9130)

Table 3.1: Polkadot version references

Name Cumulus

Repository https://github.com/paritytech/cumulus

Commit hash 0be8e8fc214641e306e4f913dd64ff1913e46e95

Commit date 2021/11/24

Chain-spec Statemine

Runtime v6.0.0 (runtime 600)

Table 3.2: Cumulus version references

3.6 Polkadot-launch configuration

To start a network, the CLI tool Polkadot-launch4 was used with a configuration to start a
kusama-local with two validators and statemine-local with two collators network.

Small modifications were made to the default statemine-local chain specification, generated
with the build-spec command of the collator binary, to increase the base amount of tests accounts
of the balances pallet.

4https://github.com/paritytech/polkadot-launch

Ref: 21-12-908-REP 6 Quarkslab SAS

https://github.com/paritytech/polkadot
https://github.com/paritytech/polkadot/commit/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50
https://github.com/paritytech/cumulus
https://github.com/paritytech/cumulus/commit/0be8e8fc214641e306e4f913dd64ff1913e46e95
https://github.com/paritytech/polkadot-launch

4 XCM pallet

4.1 Pallet XCM

pallet-xcm provides ten extrinsics that can be split into three categories. The first category
provides primitive functions to execute locally or send an XCM message. The second provides
high-level functions for asset transfers. The last one provide some extrinsics aimed exclusively at
version negotiation.

Primitives

execute

This call is a direct access to the XCM executor. It checks the origin (see. 4.2), the message, and
ensure no filter is blocking the execution. Then it executes the message locally and return the
outcome as an event. It is necessarily executed on behalf of the account that have signed the
extrinsic (origin).

The relay chain uses the execute_xcm_in_credit function of the XCM executor code base to
execute locally. This function mainly tries to weight the message to see if the weight limit can be
respected, checks if it passes the barrier(s), executes the message respecting the error handling
and/or the possible appendix programs then finally handles surplus weight and returns the
outcome of the execution to the caller.

send

The send extrinsic is an interface to send a message to a destination. By following the source
code on Self::send_xcm, which trait implementation for a relay chain can be found in /run-
time/common/src/xcm_sender.rs. Listing 1 shows that for now, the only valid destination is exactly
one parachain. Also, in this context “sending” means putting the message in a queue for down-
ward destinations. These destinations will retrieve available messages in their queues and then
execute it with their executor implementation.

Ref: 21-12-908-REP 7 Quarkslab SAS

https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/runtime/common/src/xcm_sender.rs
https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/runtime/common/src/xcm_sender.rs

match dest {
MultiLocation { parents: 0, interior: X1(Parachain(id)) } => {

// Downward message passing.
let versioned_xcm =

W::wrap_version(&dest, msg).map_err(|()|
SendError::DestinationUnsupported)?;↪→

let config = <configuration::Pallet<T>>::config();
<dmp::Pallet<T>>::queue_downward_message(

&config,
id.into(),
versioned_xcm.encode(),

)
.map_err(Into::<SendError>::into)?;
Ok(())

},
dest => Err(SendError::CannotReachDestination(dest, msg)),

}

Listing 1: send_xcm trait implementation

Transfers of assets

It is not possible to initiate transfers from a system to another without having the authority (and
thus the origin) of the trusted system directly. That’s why it is not possible to send a transfer
message with a user account as origin, using the send extrinsic, because a DescendOrigin will
be systematically inserted before any instruction added in a XCM message to reflect its real origin.
For more information on this aspect see Section 6.4.

To make transfers between users across systems possible, the pallet-xcm proposes four extrinsics,
or more precisely two extrinsics that will send messages with the origin of the sender system for
some controlled parts of the message with some additional checks.

Indeed, there are really only two functions underneath, do_reserve_transfer_assets and
do_teleport_assets. These functions are wrapped by four extrinsics:

• teleport_assets;
• reserve_transfer_assets;
• limited_teleport_assets;
• limited_reserve_transfer_assets.

The limited version of these wrappers provide the possibility to input another argument, an
Option<WeightLimit> that will be passed to the actual functions. These weight limit, if not
explicitely set, will be computed.

teleport_assets and limited_teleport_assets

The weight computation process can help to understand these extrinsics. First, the local weight is
calculated based on the following XCM message:

Ref: 21-12-908-REP 8 Quarkslab SAS

Xcm(vec![
WithdrawAsset(assets),
InitiateTeleport { assets: Wild(All), dest, xcm: Xcm(vec![]) },

]);

Indeed, these four extrinsics execute some XCMmessages and this is the part that will be executed
locally. In that message, the nested XCM part in the InitialeTeleport instruction is empty.

Next, in the corresponding do_teleport_assets function, if no weight limit has been passed,
the remote weight will be calculated by weighting the following message:

Xcm(vec![
ReceiveTeleportedAsset(assets.clone()),
ClearOrigin,
BuyExecution { fees, weight_limit: Limited(0) },
DepositAsset { assets: Wild(All), max_assets, beneficiary },

]);

Logically, the final message should be a combination of the two that were used to give an
estimation of the local and remote weight.

Xcm(vec![
WithdrawAsset(assets),
InitiateTeleport {

assets: Wild(All),
dest,
Xcm(vec![

BuyExecution { fees, weight_limit },
DepositAsset { assets: Wild(All), max_assets, beneficiary },

]);
}

]);

And that’s almost it, only two instructions ReceiveTeleportedAsset and ClearOrigin are miss-
ing from the nested message. It is because these two instructions will be prepended at execution
time by the XCM executor. The code of the processor of the InitiateTeleport instruction
specifies these two lines:

let mut message = vec![ReceiveTeleportedAsset(assets), ClearOrigin];
message.extend(xcm.0.into_iter());

To conclude, some instructions trigger the sending of another XCM message, and often, it needs
to be interpreted with the sender system as origin instead of the user that initiated the message.
That’s why some instructions, like ReceiveTeleportedAsset, are injected and require some
specific origin. Then a ClearOrigin or DescendOrigin will be added to prevent the user from
being able to execute some controlled instructions with a superior level of privileges.

Ref: 21-12-908-REP 9 Quarkslab SAS

reserve_transfer_assets and limited_reserve_transfer_assets

These extrinsics are highly similar to their teleport counterparts. In this situation, the message
that will be finally executed is the following:

Xcm(vec![
TransferReserveAsset {

assets,
dest,
Xcm(vec![

BuyExecution { fees, weight_limit },
DepositAsset { assets: Wild(All), max_assets, beneficiary },

])
}

]);

And similarly, at execution, the TransferReserveAsset instruction will prepend ReserveAsset-
Deposited and ClearOrigin before executing any nested instructions.

The implementation is secure as instructions like TransferReserverAsset require a privileged
origin and the only way to obtain it is through these extrinsics that carefully downgrade the
origin.

Version negotiation

The third category groups four extrinsics that deal with XCM version usage. They require root
as origin so we can consider them as admin features. On Kusama, without the sudo pallet, it is
impossible to call these extrinsics from “outside” the runtime.

force_xcm_version

This extrinsic is a root access to modify the SupportedVersion storage. It is a double map,
containing the information about the version supported by destinations.

force_default_xcm_version

This extrinsic is a root access to set the SafeXcmVersion storage. This is the default version used
when the destination version is unknown.

force_subscribe_version_notify

It sends an XCM message containing only a SubscribeVersion instruction to a destination. On
a relay chain, it uses the XcmRouter directly so the final message contains only that instruction
with the origin of the relay chain itself. It can also only be called as root.

Ref: 21-12-908-REP 10 Quarkslab SAS

force_subscribe_version_notify

This extrinsic is also sending an XCM message containing only one instruction, but this time
UnsubcribeVersion. It can also only be called as root.

4.2 Pallet Configuration

The XCM pallet behavior can be configured by any runtime by modifying the Config of the pallet.
It defines multiple traits that can be implemented. These parameters are very important. A
bad configuration exposed a parachain to a hack in the past [3]. Listing 2 shows the Kusama
configuration. Each type is discussed in the following sections.

impl pallet_xcm::Config for Runtime {
type Event = Event;
type SendXcmOrigin = xcm_builder::EnsureXcmOrigin<Origin,
LocalOriginToLocation>;↪→

type XcmRouter = XcmRouter;
// Anyone can execute XCM messages locally...
type ExecuteXcmOrigin = xcm_builder::EnsureXcmOrigin<Origin,
LocalOriginToLocation>;↪→

// ...but they must match our filter, which rejects all.
type XcmExecuteFilter = Nothing;
type XcmExecutor = XcmExecutor<XcmConfig>;
type XcmTeleportFilter = Everything;
type XcmReserveTransferFilter = Everything;
type Weigher = FixedWeightBounds<BaseXcmWeight, Call, MaxInstructions>;
type LocationInverter = LocationInverter<Ancestry>;
type Origin = Origin;
type Call = Call;
const VERSION_DISCOVERY_QUEUE_SIZE: u32 = 100;
type AdvertisedXcmVersion = pallet_xcm::CurrentXcmVersion;

}

Listing 2: Kusama XCM pallet configuration

Event, Origin and Call

These three types come from the construct_runtime! macro.

SendXcmOrigin and ExecuteXcmOrigin

ExecuteXcmOrigin is called in execute, do_reserve_transfer_assets and do_teleport_-
assets. The SendXcmOrigin is only called in the send extrinsic. These functions are a more
general way to authorize specific origins and convert them to MultiLocations. It is usually done
per extrinsic using the ensure_someOrigin syntax, but this way makes a custom configuration
easier for the entry points of sending and executing XCM.

Ref: 21-12-908-REP 11 Quarkslab SAS

/// Type to convert an `Origin` type value into a `MultiLocation` value which
represents an interior location↪→

/// of this chain.
pub type LocalOriginToLocation = (

// We allow an origin from the Collective pallet to be used in XCM as a
corresponding Plurality of the↪→

// `Unit` body.
BackingToPlurality<

Origin,
pallet_collective::Origin<Runtime, CouncilCollective>,
CouncilBodyId,

>,
// And a usual Signed origin to be used in XCM as a corresponding AccountId32
SignedToAccountId32<Origin, AccountId, KusamaNetwork>,

);

Listing 3: Kusama origin to location conversion

EnsureXcmOrigin takes a converter as generic argument and Kusama uses one called LocalOrig-
inToLocation shown in Listing 3. It is a tuple particularly composed of SignedToAccountId32
that authorizes a signed origin to call the execute, send, teleport and reserve extrinsics.

XcmRouter

The XCM pallet needs an XCM router to be able to send messages. The Kusama relay chain uses a
router called xcm_sender::ChildParachainRoute, ie. it is only able to send messages to child
parachains at the moment. The Statemine Parachain for example uses a combination of two
routers via a tuple, one to send to its parent relay chain, and one to send to siblings parachains.

Note

In the current state of development the router does not play a central role in terms
of security but XCM is meant to play a broader role to bind different relay chains
or any consensus system [2]. As such, it might play a greater security role when
the topology of consensus systems connected via XCM becomes more complex.

XcmExecutor

It is the main component that contains the Cross-Consensus Virtual Machine (XCVM) and that
will be used by the pallet to interprete instructions. It is further described in Section 5.

XcmExecuteFilter, XcmTeleportFilter and XcmReserveTransferFilter

These filters are called by their respective extrinsics, and it’s the first filtering mechanism. They
take a type that implements the trait Contains. Everything returns true and Nothing false,
their deprecated counterparts are called respectively AllowAll and DenyAll, which can be more

Ref: 21-12-908-REP 12 Quarkslab SAS

eloquent for filters. The Kusama configuration is (as the commentary implies) denying all attempts
to execute a message. The execute extrinsic is somewhat disabled while transfers are allowed.

Weigher

Weigher are necessary to dynamically weight XCM messages that can be composed of many
instructions and nested XCM messages. It is an important part to correctly adjust the fee that
needs to be paid for the execution.

LocationInverter

The location inverter is used when sending XCM messages to reverse the references to assets. For
instance, as all locations are relative in XCM, they must be modified when changing context.

Version Discovery Queue Size

The VersionDiscoveryQueue is an important part of the version negotiation further investigated
in Section 6.2. This queue is popped by the on_initialize hook, called at each block, one
element at a time. It is implemented as a bounded vector on Kusama with a limit of 100 elements.
It means that this queue can contain a maximum of 100 destinations to request. This limit is not
a concern because, first, its value is enough considering the number of different destinations in
Polkadot or Kusama network. Secondly, because it would not imply any security concern if that
queue was full, but only delay the version discovery process for some destinations.

AdvertisedXcmVersion

AdvertisedXcmVersion is the XCM version that will be advertised by the pallet when being
asked, after receiving a SubscribeVersion by a peer wanting to communicate via XCM. In the
current Kusama configuration, version 2 is used.

Conclusion

From a security perspective, many of these configuration settings are important, filters like
XcmExecuteFilter are an easy way to enable or not parts of the pallet. The ExecuteXcmOrigin
and SendXcmOrigin permit a more granular approach on the filtering of origins. Then the
Weigher is crucial to correctly apply fees to the execution. Finally the AdvertisedXcmVersion is
a constant and cannot be altered without modifying the runtime itself, which is good to avoid
downgrades. The current configuration is restrictive which reduces the attack surface.

Ref: 21-12-908-REP 13 Quarkslab SAS

5 XCM Runtime Configuration

The XCM executor is parameterized by a Config trait defined in polkadot/xcm/xcm-
executor/src/config.rs. It specifies sub-traits and functions for various components of XCM which
behavior can be defined by the chain developer. Most functions of these traits are called within
the executor upon receiving a specific instruction opcode. Hence, the configuration offers a gentle
mechanism to program specific behavior for XCM instructions by implementing traits.

The overall security of a chain XCM executor relies almost entirely on the imple-
mentation of those traits1. In this section we focus on the Kusama configuration
in polkadot/runtime/kusama/src/lib.rs and the base parachain-template configuration in
cumulus/parachain-template/runtime/src/lib.rs for respectively the relay chain and the default
parachain.

The following sections quickly describe the various traits, their usage in the executor and potential
security implications.

5.1 AssetTransactor
/// How to withdraw and deposit an asset.
pub trait TransactAsset {

// triggered by: ReceiveTeleportedAsset(MultiAssets)
fn can_check_in(_origin: &MultiLocation, _what: &MultiAsset) -> XcmResult;

// triggered by: ReceiveTeleportedAsset(MultiAssets)
fn check_in(_origin: &MultiLocation, _what: &MultiAsset);

// triggered by: InitiateTeleport(assets, dest, ...)
fn check_out(_dest: &MultiLocation, _what: &MultiAsset); // InitiateTeleport

// triggered by: DepositAsset(assets,..., beneficiary),
DepositReserveAsset(assets, .., dest, ..)↪→

fn deposit_asset(_what: &MultiAsset, _who: &MultiLocation) -> XcmResult;

// triggered by: WithdrawAsset(MultiAssets)
fn withdraw_asset(_what: &MultiAsset, _who: &MultiLocation) -> Result<Assets,
XcmError>;↪→

// triggered by: beam_asset()
fn transfer_asset(_asset: &MultiAsset, _from: &MultiLocation, _to:
&MultiLocation) -> Result<Assets, XcmError>;↪→

// triggered by: TransferAsset(assets, beneficiary)
fn beam_asset(asset: &MultiAsset, from: &MultiLocation, to: &MultiLocation) ->
Result<Assets, XcmError>;↪→

}

1which vary from a chain to another

Ref: 21-12-908-REP 14 Quarkslab SAS

https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/xcm/xcm-executor/src/config.rs
https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/xcm/xcm-executor/src/config.rs
https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/runtime/kusama/src/lib.rs#L1390
https://github.com/paritytech/cumulus/blob/0be8e8fc214641e306e4f913dd64ff1913e46e95/parachain-template/runtime/src/lib.rs#L458

The trait defines functions configuring the withdrawal and deposit of assets. The implementation
is parameterized by a currency, a means of converting a MultiLocation into an account, etc.
The main difference between Kusama and Statemine is the AccountIdConverter which allows
resolving a MultiLocation to an account.

Kusama configuration. It is configured to address both local accounts or child parachain accounts.
It also defines a CheckAccount to hold native teleported assets which are not yet back on the
chain.

parachain-template configuration. The AccountIdConverter allows converting relay chain,
parachain sibling or local MultiLocation to a local account which is slightly different from
Kusama. Nevertheless, it does not define a CheckAccount and thus does not track teleported
assets.

Both of these configurations seem to flawlessly fulfill their usage.

5.2 OriginConverter

This trait defines a single function to implement for converting the origin on the behalf of which,
the extrinsic call of a Transact instruction will be performed. Namely it converts a MultiLocation
to an OriginTrait type.

Kusama configuration. It defines some acceptation criteria defined by:

type LocalOriginConverter = (
// A `Signed` origin of the sovereign account that the original location controls.
SovereignSignedViaLocation<SovereignAccountOf, Origin>,
// A child parachain, natively expressed, has the `Parachain` origin.
ChildParachainAsNative<parachains_origin::Origin, Origin>,
// The AccountId32 location type can be expressed natively as a `Signed` origin.
SignedAccountId32AsNative<KusamaNetwork, Origin>,
// A system child parachain, expressed as a Superuser, converts to the `Root` origin.
ChildSystemParachainAsSuperuser<ParaId, Origin>,

);

More precisely, given a Transact providing an OriginKind, the XCM executor takes the current
origin and performs the following checks:

• SovereignSignedViaLocation: if the origin kind is SovereignAccount, it makes sure it
can convert the current origin to a local account (Origin::signed(id)).

• ChildParachainAsNative: if the origin kind is Native make sure the current origin multi-
location is a parachain. If so returns a ParachainOrigin(id).

• SignedAccountId32AsNative: if the origin kind is Native, ensure the origin refers to a
local account with the same network id. (Origin::signed(id))

• ChildSystemParachainAsSuperuser: if the origin kind is Superuser and the current
origin is a parachain which is system then enables it to perform the call as root
(Origin::root()).

Parachain-template configuration. It defines the following criteria:

Ref: 21-12-908-REP 15 Quarkslab SAS

• SovereignSignedViaLocation: which attempts to convert the current origin to a local
account whether it comes from the relay chain, a sibling parachain or a straight local
account.

• RelayChainAsNative: if kind is Native and origin is the relay chain, perform the transact
as the native chain.

• SiblingParachainNative: if kind is Native and origin is a parachain, convert to a
ParachainOrigin origin.

• SignedAccountId32Native: same as Kusama

• XcmPassthrough: if kind is Xcm, then reuse the current origin

All these conversion criteria are important from a security perspective as they translate an XCM
origin to a local origin specific to the current runtime. It somehow works like the discretionary
access control (DAC) of Linux systems, where parachain developers are in charge of allowing or
not some origins to execute a given extrinsic or code portion.

In a security model where a parachain fully trust the relay chain, the current configuration is
adequately configured.

5.3 IsReserve and IsTeleporter

These configuration elements must implement the FilterAssetLocation trait that defines the
following function:

fn filter_asset_location(asset: &MultiAsset, origin: &MultiLocation) -> bool;

It must return whether it accepts the origin as a reliable source for respectively a reserve or
teleported assets. The reserve check is performed when receiving a ReceiveAssetDeposited
instruction and the teleport when receiving a ReceiveTeleportedAsset.

Kusama does not accept a reserve but accepts teleports of any fungible token from the Statemine
parachain. Conversely, parachain-template disables teleporting but defines NativeAsset as a
reserve. That filter ensures the asset is managed by the origin of the message. Under this setting
the parachain can only accept assets from the relay chain and the relay chain teleport assets from
Statemine which is considered trusted.

5.4 LocationInverter

The trait defines the mean of inverting a MultiLocation. The framework provides a single
implementation parameterized by the Ancestry which is Here for a relay chain and is Parachain
for a parachain.

Ref: 21-12-908-REP 16 Quarkslab SAS

5.5 Barrier

Barriers are a set of filters to statically accept or reject XCM messages. It strongly influences the
kind of messages that can be received by a chain. A barrier trait should implement the following
function:

pub trait ShouldExecute {
fn should_execute<Call>(origin: &MultiLocation, message: &mut Xcm<Call>,
max_weight: Weight, weight_credit: &mut Weight) -> Result<(), ()>;↪→

}

The function takes the origin that initiated the message, the message and weight-related parame-
ters. Kusama is instanciated with the following barriers:

pub type Barrier = (
TakeWeightCredit, // Weight that is paid for may be consumed.
AllowTopLevelPaidExecutionFrom<Everything>, // If the message is one that
immediately attemps to pay for execution, then allow it.↪→

AllowUnpaidExecutionFrom<IsChildSystemParachain<ParaId>>, // Messages coming
from system parachains need not pay for execution.↪→

AllowKnownQueryResponses<XcmPallet>, // Expected responses are OK.
AllowSubscriptionsFrom<OnlyParachains>, // Subscriptions for version tracking
are OK.↪→

);

More precisely they perform the following actions:

• TakeWeightCredit: Does not perform any checks on the message but instead checks that
there are more credit allocated than the weight of the message. In the current implementa-
tion it only allows local execution of teleports and reserve transfers using (limited_)tele-
port_asset and (limited_)reserve_transfer_asset extrinsics. Indeed these functions
call execute_xcm_in_credit with a specific credit equal to the message weight. All other
means of getting in execute_xcm_in_credit is done without credit and will not be accepted
by the barrier.

• AllowTopLevelPaidExecutionFrom: configured with Everything, it enables any origin as
long as the message is of the form:

– One of ReceiveTeleportedAsset, WithdrawAsset, ReserveAssetDeposited,
ClaimAsset, followed by;

– Zero or more ClearOrigin followed by;

– BuyExecution.

• AllowUnpaidExecutionFrom: configured with IsChildSystemParachain grants any sys-
tem parachain XCM message. Note that it does not perform any checks related to weight.

• AllowKnownQueryResponses: allows any message containing only a QueryResponse op-
code and with an expected query ID.

Ref: 21-12-908-REP 17 Quarkslab SAS

• AllowSubscriptionsFrom: configured with OnlyParachains it only grants SubscribeV-
ersion and UnsubscribeVersion as single instruction messages coming from parachains,
allowing free version negotiation.

To recap, the barriers are part of the execution of XCM messages, they are early in the execution
and answer the question “should this message be executed?”. They can be combined to allow
exceptions, such as authorizing any messages that can be recognized as taking part to system
functionalities, such as the version negotiation process with the subscription and query response
messages, or the message coming from a trusted origin that should be allowed to execute
anything. For example, the default parachain-template configures AllowUnpaidExecutionFrom
with ParentOrParentsExecutivePlurality, thus allowing message from the relay chain or the
executive plurality of the relay chain. Finally, its possible to implement more sophisticated barriers
to check that a payment has been programmed into the message for the execution of standard
user messages. Or, it can be used in more elaborate scenarios, such as ones with credits or a free
tier of execution.

Barriers have the responsibility to accept or reject a message according to the chain policy. Their
combinations should be made carefully in order for filters to reflect the chain business logic. Badly
configured barriers can let unexpected messages to be blindly executed by the executor.

5.6 Weigher

A weigher is the mean of computing the weight for a given message. The builder
polkadot/xcm/xcm-builder/src/weight.rs provides an implementation called FixedWeightBounds
parameterized by a base weight for each XCM instruction opcode (109) and a maximum instruc-
tion number (100). Both Kusama and parachain-template are parameterized with the same value.
A noticeable aspect of the algorithm is the weight of a call in a Transact instruction.

5.7 Trader

The Trader is the way to purchase the weight necessary to execute the message, it could in theory
accept different assets and handle the conversion, but for now, the main implementation only
handles the AssetId passed as a generic type, which is for Kusama and Statemine, the native
coin of the relay chain. As explained in Section 5.5, the necessity to buy weight is enforced by the
barriers, thus some messages can be executed without using the trader. The trait that a Trader
must implement is the WeightTrader, which includes buy_weight and refund_weight methods
shown in Listing 4.

Ref: 21-12-908-REP 18 Quarkslab SAS

https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/xcm/xcm-builder/src/weight.rs

/// Charge for weight in order to execute XCM.
/// [...]
pub trait WeightTrader: Sized {

/// Create a new trader instance.
fn new() -> Self;

/// Purchase execution weight credit in return for up to a given `fee`. If
less of the fee is required↪→

/// then the surplus is returned. If the `fee` cannot be used to pay for the
`weight`, then an error is returned.↪→

fn buy_weight(&mut self, weight: Weight, payment: Assets) -> Result<Assets,
XcmError>;↪→

/// Attempt a refund of `weight` into some asset. The caller does not
guarantee that the weight was purchased using `buy_weight`.↪→

/// Default implementation refunds nothing.
fn refund_weight(&mut self, _weight: Weight) -> Option<MultiAsset> {

None
}

}

Listing 4: WeightTrader trait

Functions buy_weight and refund_weight of the trader are only called in the executor by
instructions BuyExecution and RefundSurplus. Only refund_weight is called via refund_-
surplus at the end of the execution in the ExecuteXcm implemented in the xcm-executor
library.

In Kusama, Statemine and the parachain template, the UsingComponent implementation is used,
it can be found in polkadot/xcm/xcm-builder/src/weight.rs. It is a tuple struct that has three fields
with types Weight and Currency::Balance associated with the trader. This implementation
stores the fees paid in its second field and actually pays for the execution in its custom destructor
code. Indeed UsingComponent implements the Drop trait that is explicitely called at the end of
the execution of XCM messages.

In the current implementation, there are no means of getting more assets refunded, or tricking
the trader in an inconsistent state.

Note

The Trader directly takes part in the fees payment process. For example, to pay
for its own execution, a message typically includes:

• a WithdrawAsset instruction that will take assets from the author account
and put it in the Holding registry;

• a BuyExecution instruction that will take a part of the assets in the Holding
and give it to the trader.

Finally, at the end of the execution, some unused weight can be refunded and drop
from the Drop trait will be called on the trader to deconstruct it and pay the system

Ref: 21-12-908-REP 19 Quarkslab SAS

https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/xcm/xcm-builder/src/weight.rs

with the balance of the trader.

5.8 ResponseHandler

The OnResponse traits enables implementing defined actions when receiving QueryResponse
instructions. Both Kusama and parachain-template use the same implementation provided by
the XCM pallet. It checks that the response id is expected, and processes it when receiving it. It
properly rejects any response that it did not query beforehand. Note that, for a certain type of
pending query, if maybe_notify is not present, the query is never removed from the Queries
storage which enables the origin of the response to send it indefinitely as barriers does not enforce
buying execution for it.

Queries can have different QueryStatus associated in the Queries storage, see Listing 5.
QueryStatus::VersionNotifier is dedicated to version negotiation subscription, QuerySta-
tus::Ready is for queries already answered without any callback2 specified, and finally, QueryS-
tatus::Pending is for queries without response yet.

pub enum QueryStatus<BlockNumber> {
/// The query was sent but no response has yet been received.
Pending {

responder: VersionedMultiLocation,
maybe_notify: Option<(u8, u8)>,
timeout: BlockNumber,

},
/// The query is for an ongoing version notification subscription.
VersionNotifier { origin: VersionedMultiLocation, is_active: bool },
/// A response has been received.
Ready { response: VersionedResponse, at: BlockNumber },

}

Listing 5: QueryStatus enumerate

2Callbacks are named maybe_notify.

Ref: 21-12-908-REP 20 Quarkslab SAS

QueryStatus::Pending

No YesQuery
id found in

Queries

QueryStatus::Ready

None Somematch
maybe_notify

yesNo Call decode
succeed

Queries::remove(query_id)

ø

Queries state unmodified

(a) Current workflow

QueryStatus::Pending

No YesQuery
id found in

Queries

QueryStatus::Ready

None Somematch
maybe_notify

yesNo Call decode
succeed

Queries::remove(query_id)

ø

Queries state unmodified

TrueFalse timeout <
block number

(b) With timeout check

Figure 5.1: Logic flow for Pending requests

Timeout check on call to maybe_notify in on_response

INFO1 Check that timeout is inferior to the current_block_number in on_response

Category Informational

Status Present

Rating Severity: Info Impact: None Exploitability: None

The timeout specified in a QueryStatus::Pending is ignored in the on_response handler and
comments of the pallet XCM report_outcome and report_outcome_notify document that
BlockNumber as “the block number after which it is permissible for notify not to be called even if
a response is received.”

Thus it would be expected by a user of this API that the timeout might be respected, that is
why an additionnal check on that timeout could be performed just after the match to check the
maybe_notify presence. The on_response execution flow would be modified as displayed in
green in Figure 5.1(b).

Check on the expected response type

INFO2 Add check on the expected response type

Category Informational

Status Present

Rating Severity: Info Impact: None Exploitability: None

Ref: 21-12-908-REP 21 Quarkslab SAS

pub enum Response {
/// No response. Serves as a neutral default.
Null,
/// Some assets.
Assets(MultiAssets),
/// The outcome of an XCM instruction.
ExecutionResult(Option<(u32, Error)>),
/// An XCM version.
Version(super::Version),

}

Listing 6: Response enumerate

Response is an enumeration composed of different types as shown in Listing 6. In the current
design, the Queries storage stores the query id to make sure that an answer was previously
requested with the correct QueryStatus. It could also be good practice to note whether this
query expected a Response::Assets or a Response::ExecutionResult, for example. In the
current situation, a request triggered by a QueryHolding could be theorically answered with a
Response::ExecutionResult.

Handling of function expecting_response

INFO3 Implicit link between expecting_response and AllowKnownQueryResponses

Category Informational

Status Present

Rating Severity: Info Impact: None Exploitability: None

The OnResponse trait defines expecting_response and on_response. While the latter is called
upon handling the QueryResponse instruction opcode, expecting_response is only called in the
AllowKnownQueryResponses barrier. Kusama is configured to use this barrier so that function
plays its role, but any parachain-template does not. Thus a parachain forgetting using that barrier
could be misled thinking the function will be called by the executor. Putting the function in the
barrier enables dropping early any unexpected QueryResponse but does not follow the same
design choice that other functions defined by the config traits do which are, for most of them,
called in instruction handlers.

A proposal is to remove the expecting_response call from the barrier and putting in the QueryRe-
sponse handler of execute in polkadot/xcm/xcm-executor/src/lib.rs, with a code similar to the
one shown in Listing 7.

Ref: 21-12-908-REP 22 Quarkslab SAS

https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/xcm/xcm-executor/src/lib.rs

QueryResponse { query_id, response, max_weight } => {
let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
if ResponseHandler::expecting_response(origin, query_id) {

Config::ResponseHandler::on_response(origin, query_id, response,
max_weight);↪→

Ok(())
}
else {

Err(())
}

}

Listing 7: QueryResponse instruction handler

It would make sure that the trait function is called regardless of the XCM barrier configuration
and only postpone the check few calls later. A barrier can still be relevant to check that a message
containing a QueryResponse instruction is only one instruction long.

5.9 AssetTrap and AssetClaims

The AssetTrap defines the action to perform on assets left in the holding of the XCVM after
executing a message. These assets depending on the implementation can be claimed via the
ClaimAssets trait implementation. The post [4] gives thorough explanations of the mechanism.

Both kusama and parachain-template use the default implementation provided by the XCM pallet
which stores all traps in a storage. To be generic it does not store assets as a balance but instead,
the storage key is the blake2 (256bits) of the (origin, assets) tuple. The value is the number
of times this tuple has been trapped. To recover funds, a user has to claim assets of the exact
assets trapped. Its origin is then used to perform the hash and the lookup in the storage which
decrements the value or remove the entry. As such, the user has to perform as many claims as
traps occured.

The security of this mechanism relies on the fact that the given assets can only be claimed by the
same origin. The function properly decrements or removes the key from the map after a claim,
preventing claiming the assets twice.

5.10 SubscriptionService

The trait defines the action to perform when receiving XCM version change notifications. One
should implement a start and stop function. All configurations use the implementation of the
XCM pallet. When receiving a SubscribeVersion the chain sends back an XCM message with
its current version. The origin is properly checked and it also ensures the query has not already
been performed. There are no impersonation nor version downgrade possibility in the current
implementation.

Ref: 21-12-908-REP 23 Quarkslab SAS

6 XCM Executor

The XCVM is a register-based machine with a limited set of instructions. There are registers1
such as program, appendix, error_handler that can modify the execution payload. Registers
to count weight such as surplus_weight or refunded_weight are used to track the execution
cost. Finally, the most important registers are holding which holds any assets manipulated by
the execution and origin which hold the current context privileges (as a MultiLocation).

Instruction Implem. Origin(ok) send XCM
BuyExecution ✓ - -
ClaimAsset ✓ ✓ -
ClearError ✓ - -
ClearOrigin ✓ - -
DepositAsset ✓ - -
DepositReserveAsset ✓ - ✓
DescendOrigin ✓ ✓ -
ExchangeAsset ✗ - -
HrmpNewChannelOpenRequest ✗ - -
HrmpChannelAccepted ✗ - -
HrmpChannelClosing ✗ - -
InitiateReserveWithdraw ✓ - ✓
InitiateTeleport ✓ - ✓
QueryHolding ✓ - ✓
QueryResponse ✓ ✓ -
ReceiveTeleportedAsset ✓ ✓ -
RefundSurplus ✓ - -
ReportError ✓ - ✓
ReserveAssetDeposited ✓ ✓ -
SetErrorHandler ✓ - -
SetAppendix ✓ - -
SubscribeVersion ✓ ✓ -
TransferAsset ✓ ✓ -
TransferReserveAsset ✓ ✓ ✓
Transact ✓ ✓ -
Trap ✓ - -
UnsubscribeVersion ✓ ✓ -
WithdrawAsset ✓ ✓ -
Implem: Implemented, Origin(ok): Origin is not None (no ClearOrigin before)

Table 6.1: XCM instructions opcodes

Table 6.1 shows all instruction mnemonics defined in the XCM executor implementation. Some of
them are not implemented like HRMP channel negotiation (which can nonetheless be instantiated

1more precisely fields of a RUST

Ref: 21-12-908-REP 24 Quarkslab SAS

manually). The second column shows instructions that explicitly check origin not to be empty.
Most of them will perform additional checks on the origin to make sure it is authorized to emit
the instruction. The third column shows instructions that themselves emit new XCM messages
(usually a response).

Message Loops and Recursion

In the current development state, XCM can not be led into creating dynamic recursion or infi-
nite loop. Indeed, there are no loop construction inside the XCM “language” or its processing.
Nevertheless, some instructions like TransferReserveAsset, DepositReserveAsset, Initi-
ateReserveWithdraw and InitiateTeleport contain themselves, nested XCM messages.That’s
why modification of the handlers of such instructions could introduce infinite loops if they happen
to insert one of those particular instructions in the message they sent. That is not the case, and in
a general manner the XCM executor must not be modified. Note that the executor contains an
unused constant about recursion.

/// The maximum recursion limit for `execute_xcm` and `execute_effects`.
pub const MAX_RECURSION_LIMIT: u32 = 8;

Nested messages in some instructions are not meant to be executed locally but sent to a destination.
The only XCM instructions that could potentially trigger finite recursion is Transact by encoding
the execution of an XCM containing a transact that is itself containing the execution of an XCM,
etc.

On the relay chain side, in the configuration of ump pallet, XcmSink is used to decode the scale mes-
sage from the queue and forward it to the executor (cf. polkadot/runtime/parachains/src/ump.rs).
It implements the process_upward_message function that uses the scale decoder on Ver-
sionedXcm. In particular, it uses decode_all_with_depth_limit with the xcm::MAX_XCM_DE-
CODE_DEPTH which is equal to 8. It means, for example, that a malicious XCM message containing
finite recursive Transact cannot achieve more than 8 in depth or an error is returned at the scale
decoding stage. The design is similar on the Parachain side, in cumulus. Parachains are using
implementations from the dmp-queue and xcmp-queue pallets, or even the one of the xcm pallet
in Cumulus repository that are using the same constant.

It is actually good practice to check for a depth limit while decoding potentially nested encoded
data. It is important making such checks at this stage because the executor, by design, does
not enforce a specific limit on nested message depth. Indeed, the executor only executes the
message, instruction by instruction without analyzing the message as a whole so it’s important
that messages have been sanitized by the decoding step before.

6.1 Arithmetic Operations

The code is written in a very defensive manner. Most assets operations are performed with
safe helper functions. For instance, to add assets, the executor uses the subsume function which
depending on the underlying asset (fungible or non-fungible) properly adds with saturating_add
or inserts the new non-fungible token.

Ref: 21-12-908-REP 25 Quarkslab SAS

https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/runtime/parachains/src/ump.rs

Similarly, reducing the holding or the amount is also performed using helper functions like
checked_sub, saturating_sub which prevents any underflow. Interestingly, some substractions
remains with the pattern shown in Listing 8.

let weight = weight.min(self.0);
//[snip]
self.0 -= weight;

Listing 8: Arithmetic substraction protected by conditional check

Many arithmetic operations are performed in queue managers ump.rs, dmp.rs etc, but values are
not directly controlled by an external user. It seems not possible to lead queues in overflowing.

6.2 Version Negotiation

The second blog post on XCM by Gavin Wood is a great introduction to version negotiation in the
context of XCM [5]. Generally, it is supposed to be a transparent mechanism for users, which
here are consensus systems like relay chains and parachains. The negotiation takes place in the
background, alongside sending regular messages.

This process can be split into two steps, first trying to send a message and notice that we don’t
know the best version for the destination. It can be seen as lazy version negotiation. Secondly, it
asks for the destination to send its supported version and handles the responses. The following
subsections explain in detail how the protocols works, Figures 6.1 and 6.2 recap the two steps.

Sending a message and noting unknown version

To send a XCM message, a system needs to know in which version it can wrap its messages to
make reception successful. For that, the XCM pallet has a storage named SupportedVersion
in which it stores the supported version for destinations. Currently, the mechanism to fill that
storage with this information starts at the sending stage of a message.

From a relay chain perspective, the XCM router finally used to send the message is located in
polkadot/runtime/common/src/xcm_sender.rs. Before sending the message to the destination,
or putting it in its dedicated queue in this case, it calls a function from the XCM pallet named
wrap_version(dest, msg).

This function checks the SupportedVersion storage and if the supported version for the spe-
cific destination is unknown, it calls the next function in the mechanism, note_unknown_ver-
sion(dest). Without interrupting the sending process, it will then wrap the message with the
appropriate version if found. Otherwise, it uses the default one and returns it.

Function note_unknown_version uses another storage called VersionDiscoveryQueue which is
“destinations whose latest XCM version we would like to know”. It is a vector of bounded size,
fixed in the configuration with the VERSION_DISCOVERY_QUEUE_SIZE storing those destinations
and an integer specifying the number of times we needed that information. So the function
iterates over that queue, bumps the integer if the location is already in the queue or else sets the

Ref: 21-12-908-REP 26 Quarkslab SAS

https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/runtime/common/src/xcm_sender.rs

destination with an integer to 1. Basically it notes that the version information needed to send
the message was missing without interrupting the sending process. The process is summarized in
Figure 6.1.

Not found

foundwrap_version

Checks SupportedVersion
for dest

XCM
message

note_unknown_version

Adds entry in
VersionDiscoveryQueue

Send with appropriate
version

Send with
SafeXcmVersion

Figure 6.1: Sending message with appropriate version

Request a destination supported XCM version

Hooks. The XCM pallet hooks on_initialize [6] which is called at the initialization of every
block. It can be considered as a routine that will be called at the creation of each block. The first
part of that function is dedicated to version migration, the next part to version discovery. The
function will get the VersionDiscoveryQueue mentioned in the previous section, trying to the
most demanded destination. It will only retrieve one destination for which to query the XCM
supported version. It will then call request_version_notify(dest) on that destination.

Function request_version_notify(dest) ensures that the destination was not already re-
quested by checking the VersionNotifiers storage, precisely containing all locations that were
already requested. It will then handle the query by incrementing the query ID, crafting a
SubscribeVersion XCM message and sending it with XcmRouter::send_xcm. Finally, Version-
Notifiers will be modified to include the new destination and the Queries storage, containing
all the ongoing queries, will be also modified to add this query as a VersionNotifier type.

Thus this routine will eventually, at a maximum rate of one by block, request for version notifica-
tions from every system the chain has sent messages to.

Version request reception. From the receiver’s perspective, version negotiation is the reception
of the SubscribeVersion instruction. Upon receiving this instruction, the XCM executor calls
VersionChangeNotifier::start. It first checks VersionNotifyTargets that stores all locations
subscribed to the system XCM version change and the most recent associated version they were
informed of. If it is not already subscribed, it then retrieves the version from AdvertisedXcmVer-
sion, builds a Response::Version object to put in a QueryResponse XCM instruction and sends
the message to the requestor. Finally, VersionNotifyTargets is mutated to take into account
the new subscriber.

Ref: 21-12-908-REP 27 Quarkslab SAS

Note

There is also the UnsubscribeVersion instruction. On its reception the handler
calls VersionChangeNotifier::stop that just removes the destination from Ver-
sionNotifyTarget.

Destination version response. Finally, the original sender that needed the version supported
by the destination receives answers as QueryResponse XCM message. The handler in the executor
only checks that the origin is not None and call ResponseHandler::on_response.

The on_response handler consists of a matcher on two patterns. In any case, it ensures the
response is expected as it was registered beforehand in the Queries storage with a unique
query ID. If not, it returns an UnexpectedResponse. Then it has a matcher for QuerySta-
tus::VersionNotifier type of queries that will make sure that the origin that responded was
the expected one, will mutate the state of the query to active and finally insert the answered
version in SupportedVersion and then emit an event. The other matcher has already been
addressed in Section 5.8.

Warning

As mentioned in some comments along the code, the handler always returns zero
for the weight consumption.

Hook: on_initialize

Tries to pop at least 1
element from
VersionDiscoveryQueue.

SubscribeVersion
request_version_notify

Checks that dest is not already
in VersionNotifiers and if so
adds in Queries and
VersionNotifiers.

ResponseHandler::on_response

Verify that the response was
requested and adds answer in
SupportedVersion.

Sender

QueryResponse

VersionChangeNotifier::start

Checks that sender is not
already in VersionNotifyTargets
and if so adds it.

Receiver

Figure 6.2: Version subscription

Conclusion. From a security perspective, the version negotiation is designed to allow systems
to communicate by progressively learning their supported versions. It is a version discovery
protocol and it seems that only the requested system can respond via verification of the query id
and the origin. But nothing stops a system to send an invalid or an old-version XCM message. It
is then the responsibility of the various XcmSink implementations to filter or convert unsupported
version.

Ref: 21-12-908-REP 28 Quarkslab SAS

Note

In the XcmSink implementation of the UMP queue used by the relay chains, at
polkadot/runtime/parachains/src/ump.rs line 103, the process_upward_message
function will try to convert old XCM versions into XCM v2 messages just after
decoding the message. Some deprecated instructions are no longer supported or
cannot be converted and this step will then throw an error.

6.3 Dynamic Testing

As part of the audit, multiple dynamic tests have been performed to assess the behavior of the
relay chains and parachain on some tests. While it would have been possible to use the XCM
simulator2 or to write tests directly in RUST, most tests have been performed using a black-box
approach ensuring tests represent an action that an attack can perform on a running “mainnet”
chain.

While Javascript APIs provides all base utilities to connect to a node and submit extrinsics,
Quarkslab chose the great py-substrate-interface3 Python framework also based on py-
scale-codec4 that enables serializing/deserializing SCALE [7] messages. A thin wrapper has
been developed on these tools to interact easily with a node within a Python shell. Thin wrappers
have also been written to craft XCM messages easily and send them to a chain. Listing 9 shows a
script to perform a reserve transfer.

2https://github.com/paritytech/polkadot/tree/master/xcm/xcm-simulator
3https://github.com/polkascan/py-substrate-interface
4https://github.com/polkascan/py-scale-codec

Ref: 21-12-908-REP 29 Quarkslab SAS

https://github.com/paritytech/polkadot/blob/7d8f00b90cd6d87780123b3e08ca120cfb0c6e50/runtime/parachains/src/ump.rs#L103
https://github.com/paritytech/polkadot/tree/master/xcm/xcm-simulator
https://github.com/polkascan/py-substrate-interface
https://github.com/polkascan/py-scale-codec

from subshell import SubstrateNode

Connect to the relay chain and set an identity to sign extrinsics automatically
relay = SubstrateNode.from_uri("ws://localhost:9944", root_xcm=True)
relay.set_identity(Keypair.create_from_uri("//Alice"))

from subshell.xcm import *

Connect to the parachain
parachain = SubstrateNode.from_uri("ws://localhost:9988")

def listen_para_blocks(block, ith, id):
for ex in block.extrinsics: # iterate extrinsics of the block

if ex.module == "ParachainSystem" and ex.function ==
"set_validation_data":↪→

check events raised which might contains a dmpqueue event
for evt in ex.events:

if evt.pallet_name == "DmpQueue" and evt.name ==
"ExecutedDownward":↪→

outcome = evt.args[1]
print(f"[parachain] XCM execution result:

{ list(outcome.keys())} ")↪→

return "" # stop listening

register block listener on parachain
parachain.subscribe_block_non_blocking(listen_para_blocks)

Craft assets and multilocation on relay chain side
parents = 0
amount = 1.
beneficiary = "0x" + Keypair.create_from_uri("//Eve").public_key.hex()

dest = VersionedMultiLocation(MultiLocation(parents, Junctions(Parachain(1000))))
benef = VersionedMultiLocation(

MultiLocation(parents,
Junctions(AccountId32(Any(), beneficiary))))

assets = VersionedMultiAssets(
MultiAssets(

MultiAsset(Concrete(MultiLocation(parents, Junctions.Here())),
Fungible(amount))↪→

))

Submit extrinsic transaction from relay chain with Alice account
res = relay.xcmpallet.limited_reserve_transfer_assets(dest, benef, assets, 0,

Unlimited(), wait_inclusion=True)↪→

iterate events to check if it has been submitted
for evt in res.events:

if evt.pallet_name == "XcmPallet" and evt.name == "Attempted":
outcome = evt.args
print(f"[relay-chain] XCM execution result: { list(outcome.keys())} ")

Listing 9: Limit reserve transfer asset script

Ref: 21-12-908-REP 30 Quarkslab SAS

The script connects to both chains, crafts the reserve transfer arguments and submits the extrinsic.
It then checks on both chains that the message has properly been submitted on one side and
executed on the other. Indeed, from a single side like relay chain it is not possible to know if a
message have properly been successful on the other-side as there is no information back from
the parachain to the relay chain. Few scenarios have been tested in such a black-box manner to
verify that chains behaves as static analysis review suggests.

Fuzzing

An elementary fuzzer have been developed to fuzz any extrinsic with random values, yet valid
with regards to scale codec. Despite being functional, the randomness nature of mutations makes
it difficult to generate interesting test-cases. Its application on XCM extrinsics appeared to be very
inefficient because each extrinsic is called sequentially and because barriers are very restrictive.
Indeed barriers are very effective at rejecting any malformed XCMmessages. Getting further in this
research would require generating more relevant messages with meaningful weights, accounts,
etc. Very little time has been dedicated to fuzzing and cannot be considered as conclusive.

Note

Slightly invalid scale encoded messages have also been submitted as extrinsic
calls. They were all rejected by the transaction validation function. As this part is
out-of-scope, only valid SCALE messages have been tested.

6.4 Origin and execution privileges

XCM Origin vs Runtime Origin

XCM origin. The XCM privilege model relies heavily on message origin (MultiLocation). There
are some instructions that can only be executed when the origin is set to certain values, for
example, the relay chain itself instead of a specific account (cf. Table 6.1 for instructions that
check that origin is different than None). In the specification of the Polkadot Cross-Consensus
Message (XCM) Format [8], the origin registry of the XCM virtual machine is described as:

Expresses the location with whose authority the current program is running. May be
reset to None at will (implying no authority), and may also be set to a strictly interior
location at will (implying a strict subset of authority).

In the case of sending from the relay chain to a parachain, the origin of the message, for the
parachain, will always be the relay chain itself. Although the origin register cannot be directly
altered, two instructions, ClearOrigin and DescendOrigin can respectively reset the registry to
None or set it to a strictly interior location. For example, to downgrade the origin from the relay
chain to a local account that signed an extrinsic to emit this message.

Ref: 21-12-908-REP 31 Quarkslab SAS

Runtime origin. The substrate documentation [9] explains that “[t]he runtime origin is used by
dispatchable functions to check where a call has come from”. Indeed, every callable extrinsic need
to have origin: OriginFor<T> as their first argument, and this parameter will be implicitly
filled at runtime when making an extrinsic call.

Note

Runtime and XCM origins are two different notions. XCM configuration traits
should define how converting an XCM origin (MultiLocation) to a runtime origin
and vice-versa. It will be needed, for example, for Transact that needs a runtime
origin from an XCM origin to make an extrinsic call.

Conclusion. The privileges execution model inside XCM relies on the content of the origin
registry during execution. This registry is always set with the literal origin of the message. But to
avoid that every message executes with the privileges of the direct sender, which is the sending
system itself, some instructions can be used to drop the origin or to downgrade to a lower privilege
origin.

Origin in the context of pallet_xcm

In the context of relay chain to parachain communication, Figure 6.3 gives an overview of the
call path to send_xcm of the XcmRouter, which is the last step before the message is deposited
into queues and then picked up by parachains. There are three ways to get to that method from
the pallet_xcm:

1. The send extrinsic, used to send an arbitrary XCM message. It will use a local send_xcm
method that will prepend DescendOrigin(interior) to the message for the receiver to be
aware of the sender of the message, which is the account that signed the extrinsic call send.

2. The force_subscribe_version_notify and force_unsubscribe_version_notify ex-
trinsics that must be called as root that will send a static XCM message with the chain as
origin.

3. Particular XCM instructions, such as TransferReserveAsset for example, or the others
referenced in the Table 6.1 as “Sending XCM”, because they will effectively send a new XCM
message when executed. These special instructions are further investigated in following
Section 6.4 because they will continue the execution on the destination with the sender
chain authority as origin.

Ref: 21-12-908-REP 32 Quarkslab SAS

Pallet XCM

prepends
DescendOrigin to
the message (with
extrinsic submitter
identity)

XcmRouter (on the relay chain)

Note: verify that destination is a X1(parachain(id)) and sends the message

(to the other chain)

fn send_xcm(dest: impl Into<MultiLocation>, msg: Xcm<()>)

Extrinsics

send()execute()

teleport_asset()
limited_ (also)

reserve_transfer_assets()
limited_ (also)

do_teleport_asset() do_reserve_transfer_asset()

Xcm Executor

vm.execute()

process_instruction(inst)
- TransferReserveAsset
- ReportError
- DepositReserveAsset
- InitiateReserveWithdraw
- InitiateTeleport
- QueryHolding

These instructions
send messages

credit to
max

execute_xcm(origin, message, limit)

execute_xcm_in_credits(...)

Figure 6.3: Usage of send xcm

Instruction sending XCM message with high privileges origin

Escalating privileges from an account would imply being able to write an arbitrary message that
will be executed with a “superior” authority as origin, such as the relay chain itself.

With the send extrinsic, escalation is not possible because a DescendOrigin(interior) will
be prepended as the first instruction of the message, thus lowering privileges immediately.
The force_subscribe_version_notify and force_unsubscribe_version_notify bypass the
privileges-drop mechanism but require to be root and send static message anyway. Then tele-
port_assets and reserve_transfer_assets or the associated limited also send message with
relay chain as origin but use static messages. The last extrinsic that can be used is execute,
that can contain an arbitrary message, and thus use instruction that will themselves send XCM
messages on behalf of the relay chain. Let’s see what messages can be sent via these instructions.

• TransferReserveAsset: this instruction takes an XCM message as its third argument. But
the content of the message will be appended to a static one containing ClearOrigin as its

Ref: 21-12-908-REP 33 Quarkslab SAS

last instruction. Thus all custom input will be executed with origin as None.

let mut message = vec![ReserveAssetDeposited(assets), ClearOrigin];
message.extend(xcm.0.into_iter());

• DepositReserveAsset: it sends the same XCM message as TransferReserveAsset.

• InitiateReserveWithdraw: it sends almost the same XCM message as TransferReserve-
Asset but with a different first instruction.

let mut message = vec![WithdrawAsset(assets), ClearOrigin];
message.extend(xcm.0.into_iter());

• InitiateTeleport: it sends almost the same XCM message as TransferReserveAsset but
with a different first instruction.

let mut message = vec![ReceiveTeleportedAsset(assets), ClearOrigin];
message.extend(xcm.0.into_iter());

• ReportError: it sends a static XCM message with the content of the error registry as
response.

let response = Response::ExecutionResult(self.error);
let message = QueryResponse { query_id, response, max_weight };

• QueryHolding: it sends the same XCM message as ReportError but with assets from the
holding registry as response.

To conclude, it is not possible for a user to use the pallet_xcm to send a message with the relay
chain authority as origin.

Warning

Any modifications to the executor codebase have to be done very carefully. The
privilege downgrade of the sender system is entirely its responsibility because the
receiver processes all messages with the sender as origin before any execution.
Then, forgetting any ClearOrigin instructions in the injection of the embedded
messages shown in the previous list will lead to executing arbitrary code on a
destination system with the origin of the sender system.

Ref: 21-12-908-REP 34 Quarkslab SAS

7 Asset Transfer

Being the main use-case of XCM, transferring assets is the most important scenario. The XCM
format enables two main kind of asset transfers behaving differently. These two are teleporting
and reserving.

Parity Tech provides some documentation on these asset transfer mechanisms [2, 10]. In this
context, it is important to check that assets are properly locked on one chain before being released
on the second one. For teleported, assets are burned on one side and minted on the destination
side. The security model relies on the trust between chains exchanging the assets. Indeed,
there is, for now, no automatic mechanism for a chain to ensure that assets have been properly
locked on the other side before releasing them locally.

These operations can be performed between the relay chain and a parachain but also between
parachains. The inner working (extrinsics used, queues, etc.) will differ (see Appendix A) but
from a functional perspective it will work the same way, depending on the chain configuration.

7.1 Withdraw and Deposit

WithdrawAsset and DepositAsset are “primitive” instructions to respectively remove on-chain
assets to the XCVM holding registry, and conversely remove assets from the XCVM holding registry
adding equivalent assets on-chain. Listing 10 and 11 show respectively WithdrawAsset and
DepositAsset handlers in XCM executor.

WithdrawAsset(assets) => {
// Take `assets` from the origin account (on-chain) and place in holding.
let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
for asset in assets.drain().into_iter() {

Config::AssetTransactor::withdraw_asset(&asset, origin)?;
self.holding.subsume(asset);

}
Ok(())

}

Listing 10: WithdrawAsset XCM executor handler

Ref: 21-12-908-REP 35 Quarkslab SAS

DepositAsset { assets, max_assets, beneficiary } => {
let deposited = self.holding.limited_saturating_take(assets, max_assets as
usize);↪→

for asset in deposited.into_assets_iter() {
Config::AssetTransactor::deposit_asset(&asset, &beneficiary)?;

}
Ok(())

}

Listing 11: DepositAsset XCM executor handler

It should be made very clear that with these two instructions alone, it is only possible to make local
transfers, with the execute extrinsic, for example, crafting a [WithdrawAsset, DepositAsset]
to send some assets to a local beneficiary. To make cross-chain transfers, other instructions such
as InitiateTeleport or TransferReserveAsset are needed and described in next sections.

7.2 Teleport and Reserve Transfers

Tomove assets across chains via XCM, as explained in Section 4.1, one must use teleport_assets,
reserve_transfer_assets extrinsics or their limited variants. These instructions execute an
XCM message locally and then send a message to the desired destination to make the transfer
effective. Additional checks are specified since this part of the execution, locally and remotely,
has to be done in the name (Origin) of the sender system, instead of the user that initiated it.
That is why a ClearOrigin will be injected in the sent message to prevent any following custom
instructions being interpreted with a wrong origin.

Teleport Assets

Calling teleport_assets or limited_teleport_assets, the executed message will be com-
posed of a WithdrawAsset and a InitiateTeleport instruction. WithdrawAsset is straightfor-
ward and will take some assets from the origin account and put it in the XCVM holding registry.
The InitiateTeleport instruction in Listing 12 should be investigated a little bit further:

InitiateTeleport { assets, dest, xcm } => {
// We must do this first in order to resolve wildcards.
let assets = self.holding.saturating_take(assets);
for asset in assets.assets_iter() {

Config::AssetTransactor::check_out(&dest, &asset);
}
let assets = Self::reanchored(assets, &dest)?;
let mut message = vec![ReceiveTeleportedAsset(assets), ClearOrigin];
message.extend(xcm.0.into_iter());
Config::XcmSender::send_xcm(dest, Xcm(message)).map_err(Into::into)

}

Listing 12: InitiateTeleport XCM executor handler

Ref: 21-12-908-REP 36 Quarkslab SAS

ReceiveTeleportedAsset(assets) => {
let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
// check whether we trust origin to teleport this asset to us via config
trait.↪→

for asset in assets.inner() {
// We only trust the origin to send us assets that they identify as their
// sovereign assets.
ensure!(

Config::IsTeleporter::filter_asset_location(asset, origin),
XcmError::UntrustedTeleportLocation

);
// We should check that the asset can actually be teleported in (for this

to be in error, there↪→

// would need to be an accounting violation by one of the trusted chains,
so it's unlikely, but we↪→

// don't want to punish a possibly innocent chain/user).
Config::AssetTransactor::can_check_in(&origin, asset)?;

}
for asset in assets.drain().into_iter() {

Config::AssetTransactor::check_in(origin, &asset);
self.holding.subsume(asset);

}
Ok(())

}

Listing 13: ReceiveTeleportedAsset XCM executor handler

The instruction has the following behavior:

• First, assets specified in parameters are taken from the holding registry with
self.holding.saturating_take(assets).

• Then, AssetTransactor::check_out is called, it will generally increase the assets in a
special “teleported” account, it is bookkeeping.

• The reanchored function is called on the assets with the destination to invert the relative
location.

• Two instructions, [ReceiveTeleportedAsset(assets), ClearOrigin] are inserted at the
beginning of the message that will be sent to the destination.

• The embedded modified message is sent to the destination.

Upon reception, the destination will then execute ReceiveTeleportedAsset shown in Listing 13
first.

Here is a break-down of this instruction:

• First, the origin is copied from the origin registry and must be different from none otherwise
a BadOrigin is returned.

• Then, IsTeleporter is called on the assets. On statemine, it’s a function that only accepts
native assets.

Ref: 21-12-908-REP 37 Quarkslab SAS

• Next, the AssetTransactor::can_check_in and AssetTransactor::check_in will be
called to note and remove the asset from the bookkeeping account. Statemine uses a tuple
for AssetTransactor composed of (CurrencyTransactor, FungiblesTransactor), the
first one is the same as the one used on Kusama, to handle native coin, and the second
is specific to Statemine, to handle other fungible assets. Their implementations are quite
similar except one is using the Currency trait and the other one the Asset trait. The check_-
in method will respectively implement the withdraw/burn of the asset on the bookkeeping
account.

• Finally, self.holding.subsume(asset) adds the assets in parameters to the holding reg-
istry, ready to be deposited by the next instructions.

In short, a teleport can somehow be summarized to a self.holding.saturating_take in the
sender XCVM, and a self.holding.subsume in the destination XCVM. Since the assets are not
directly stored anywhere in between, except with the bookkeeping that keeps a trace of the
total amounts teleported, assets might be lost if the ReceiveTeleportedAsset is never executed
correctly for any reason. For a security perspective there is no mean of teleporting assets if the
remote chain has not explicitly been granted to do so in the configuration.

Reserve Assets

The reserve_transfer_assets and limit_reserve_transfer_assets are quite similar to the
teleport ones. One difference is that the do_reserve_transfer_assets function creates a
message with only a TransferReserveAsset instruction without a WithdrawAsset first. It’s
because the TransferReserveAsset instruction performs an AssetTransactor::beam_asset
call that will transfer the assets from the account of the origin of the message to the reserve
account associated with the destination.

TransferReserveAsset { mut assets, dest, xcm } => {
let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
// Take `assets` from the origin account (on-chain) and place into dest
account.↪→

let inv_dest = Config::LocationInverter::invert_location(&dest)
.map_err(|()| XcmError::MultiLocationNotInvertible)?;

for asset in assets.inner() {
Config::AssetTransactor::beam_asset(asset, origin, &dest)?;

}
assets.reanchor(&inv_dest).map_err(|()| XcmError::MultiLocationFull)?;
let mut message = vec![ReserveAssetDeposited(assets), ClearOrigin];
message.extend(xcm.0.into_iter());
Config::XcmSender::send_xcm(dest, Xcm(message)).map_err(Into::into)

}

Step by step, this execution of this instruction:

• First, the origin is retrieved from the origin registry, and a None origin will return a BadO-
rigin.

• Then, the destination location is inverted for the future call of assets.reanchor.

Ref: 21-12-908-REP 38 Quarkslab SAS

• Then, an AssetTransactor::beam_asset is performed to transfer the asset from the sender
(origin) to the local destination reserve account.

• Finally, [ReserveAssetDeposited(assets), ClearOrigin] instructions are inserted at
the beginning of nested XCM message and everything is sent to the destination.

Then the destination receives the message and executes the first instruction ReserveAssetDe-
posited as shown in Listing 14:

ReserveAssetDeposited(assets) => {
// check whether we trust origin to be our reserve location for this asset.
let origin = self.origin.as_ref().ok_or(XcmError::BadOrigin)?;
for asset in assets.drain().into_iter() {

// Must ensure that we recognise the asset as being managed by the origin.
ensure!(

Config::IsReserve::filter_asset_location(&asset, origin),
XcmError::UntrustedReserveLocation

);
self.holding.subsume(asset);

}
Ok(())

}

Listing 14: ReserveAssetDeposited XCM executor handler

The execution of this instruction is straightforward, it checks that the origin and the asset satisfy
the IsReserve filter and then calls self.holding.subsume(asset) that adds the assets in the
holding registry. The following instruction ClearOrigin, as usual, will reset the origin registry to
None, BuyExecution will pay for the execution and DepositAsset will retrieve the asset from
the registry to the account of a beneficiary.

Note

TransferReserveAsset, differently from InitiateTeleport, directly does the
transfer from the origin to the reserve account. But an unused instruction, in the
Polkadot codebase, DepositReserveAsset performs a very similar action than
TransferReserveAsset beside taking the asset from the holding registry, like
InitiateTeleport.

It is worth noticing that another instruction, unused in the codebase, InitiateReserveWith-
draw is the counterpart of the TransferReserveAsset or DepositReserveAsset to retrieve the
asset that was reserved in a special account on the sender side. It behaves similarly to those
other instructions, injecting two instructions [WithdrawAsset(assets), ClearOrigin] at the
beginning of the sent message, that will be executed with the sending system as origin, and thus
withdraw from the corresponding reserve account.

To sum up, a reserve can somehow be summarized to a transfer to a reserve account on the sender
chain, and a self.holding.subsume in the destination XCVM. Since the assets are reserved in
the account, InitiateReserveWithdraw makes the inverted path possible to get back the assets

Ref: 21-12-908-REP 39 Quarkslab SAS

on the initial chain. The current implementation does not raise any particular issue.

Ref: 21-12-908-REP 40 Quarkslab SAS

8 Conclusion

The cornerstone of XCM security is a very careful handling of the origin (MultiLocation) in the
XCM pallet and executor. Any bad configuration or missing check might introduce vulnerabilities
allowing unwanted transfers, etc. Thankfully, the audit did not reveal any misconception on this
aspect.

However, even though proposed configurations are coherent as a whole, any careless change
in a configuration trait behavior might have security consequences. Any parachain developer
shall be extremely cautious changing default configurations (cf. [3]). Indeed, there are implicit
dependencies between XCM traits. For example, presence or not of the QueryResponse barrier
have direct impact on the execution or not of the expecting_response of the ResponseHandler
config (cf. 5.8). As another example, the handling of BuyExecution instruction heavily relies on
the presence of the AllowTopLevelPaidExecutionFrom barrier.

Asset transfer security (reserves and teleports) is not trustless. It is critically important to trust the
chain before accepting it as a reserve or for teleports. Indeed, there are currently no mechanisms
during transfers ensuring on the receiving side that assets have properly been locked or burnt on
the sending side. It also trusts the sending chain to have properly set a ClearOrigin for these
operations. As such, two chains exchanging assets are security-wise morally interdependent.

Finally, the default XCM configuration is very conservative by default (denying all) and is deemed
secure. Quarkslab did not revealed additional1 fairness, or DOS issues.

XCM security boils down to deciding who is trusted as a reserve or a teleport origin and what to
allow to be executed thanks the various barriers, filters and origin checks. No inherent significant
issues have been found thanks to the XCM well-thought-out design and implementation.

1At the time of the audit already acknowledged issues were in the process of being fixed

Ref: 21-12-908-REP 41 Quarkslab SAS

Glossary

collator A node that maintains a parachain by collecting parachain transactions and producing
state transition proofs for the validators.

Cross-Consensus Messaging Common Messaging Format for information, asset transfer be-
tween substrate-based chains.

Cross-Consensus Messaging Protocol Main protocol allowing exchanging XCM messages.
The protocol features version negotation, channel opening negotiation and various queues
management.

Cross-Consensus Virtual Machine The XCVM is a register-based machine, none of whose
registers are general purpose. The XCVM instruction format, set of machine registers and
definitions of interaction therefore compromise the bulk of the XCM message.

extrinsic An extrinsic is a piece of information that comes from outside the chain and is included
in a block. Extrinsics fall into three categories: inherents, signed transactions, and unsigned
transactions.

pallet Substrate modules exposing various extrinsics, events, errors and storage items that will
be compiled in the runtime and usable by users or other components. It is implemented as
RUST crates.

validator A node that secures the Relay Chain by staking DOT, validating proofs from collators
on parachains and voting on consensus along with other validators.

Ref: 21-12-908-REP 42 Quarkslab SAS

Acronyms

DMP Downward Message Passing.

HRMP HoRizontal Message Passing.

PC-PC Parachain-Parachain.

PoS Proof-Of-Stake.

RC-PC Relaychain-Parachain.

UMP Upward Message Passing.

XCM Cross-Consensus Messaging.

XCMP Cross-Consensus Messaging Protocol.

XCVM Cross-Consensus Virtual Machine.

Ref: 21-12-908-REP 43 Quarkslab SAS

Bibliography

[1] Web3 Foundation. XCMP Overview. Dec. 27, 2021. url: https : / / research . web3 .
foundation/en/latest/polkadot/XCMP/index.html (visited on Dec. 27, 2021) (cit. on
p. 4).

[2] Gavin Wood. XCM: The Cross-Consensus Message Format. Sept. 6, 2021. url: https:
//medium.com/polkadot- network/xcm- the- cross- consensus- message- format-
3b77b1373392 (visited on Dec. 27, 2021) (cit. on pp. 4, 12, 35).

[3] Kusama’s Governance Thwarts Would-be Attacker! Oct. 19, 2021. url: https://medium.
com / kusama - network / kusamas - governance - thwarts - would - be - attacker -
9023180f6fb (visited on Dec. 28, 2021) (cit. on pp. 11, 41).

[4] Gavin Wood. XCM Part III: Execution and Error Management. Sept. 29, 2021. url: https://
medium.com/polkadot-network/xcm-part-iii-execution-and-error-management-
ceb8155dd166 (visited on Dec. 27, 2021) (cit. on p. 23).

[5] Gavin Wood. XCM Part II: Versioning and Compatibility. Sept. 15, 2021. url: https:
//medium.com/polkadot-network/xcm-part-ii-versioning-and-compatibility-
b313fc257b83 (visited on Dec. 27, 2021) (cit. on p. 26).

[6] Documentation on the Hooks trait. on_initialize. url: https://docs.substrate.
io / rustdocs / latest / frame _ support / traits / trait . Hooks . html # method . on _
initialize (visited on Jan. 7, 2022) (cit. on p. 27).

[7] SCALE Codec. Version 3.0. Dec. 15, 2021. url: https : / / docs . substrate . io / v3 /
advanced/scale-codec/ (visited on Dec. 28, 2021) (cit. on p. 29).

[8] Gavin Wood. Polkadot Cross-Consensus Message (XCM) Format. Version Version 2, fi-
nal. Oct. 17, 2021. url: https : / / github . com / paritytech / xcm - format / tree /
fefa511687469c9a34759465d88e3b07e3ed6d22 (visited on Dec. 28, 2021) (cit. on p. 31).

[9] Origins. Version 3.0. Dec. 15, 2021. url: https://docs.substrate.io/v3/runtime/
origins/ (visited on Dec. 28, 2021) (cit. on p. 32).

[10] Shawn Tabrizi. XCMWorkshop. Oct. 19, 2021. url: http://www.shawntabrizi.com/xcm-
workshop/#/ (visited on Dec. 28, 2021) (cit. on p. 35).

Ref: 21-12-908-REP 44 Quarkslab SAS

https://research.web3.foundation/en/latest/polkadot/XCMP/index.html
https://research.web3.foundation/en/latest/polkadot/XCMP/index.html
https://medium.com/polkadot-network/xcm-the-cross-consensus-message-format-3b77b1373392
https://medium.com/polkadot-network/xcm-the-cross-consensus-message-format-3b77b1373392
https://medium.com/polkadot-network/xcm-the-cross-consensus-message-format-3b77b1373392
https://medium.com/kusama-network/kusamas-governance-thwarts-would-be-attacker-9023180f6fb
https://medium.com/kusama-network/kusamas-governance-thwarts-would-be-attacker-9023180f6fb
https://medium.com/kusama-network/kusamas-governance-thwarts-would-be-attacker-9023180f6fb
https://medium.com/polkadot-network/xcm-part-iii-execution-and-error-management-ceb8155dd166
https://medium.com/polkadot-network/xcm-part-iii-execution-and-error-management-ceb8155dd166
https://medium.com/polkadot-network/xcm-part-iii-execution-and-error-management-ceb8155dd166
https://medium.com/polkadot-network/xcm-part-ii-versioning-and-compatibility-b313fc257b83
https://medium.com/polkadot-network/xcm-part-ii-versioning-and-compatibility-b313fc257b83
https://medium.com/polkadot-network/xcm-part-ii-versioning-and-compatibility-b313fc257b83
https://docs.substrate.io/rustdocs/latest/frame_support/traits/trait.Hooks.html#method.on_initialize
https://docs.substrate.io/rustdocs/latest/frame_support/traits/trait.Hooks.html#method.on_initialize
https://docs.substrate.io/rustdocs/latest/frame_support/traits/trait.Hooks.html#method.on_initialize
https://docs.substrate.io/v3/advanced/scale-codec/
https://docs.substrate.io/v3/advanced/scale-codec/
https://github.com/paritytech/xcm-format/tree/fefa511687469c9a34759465d88e3b07e3ed6d22
https://github.com/paritytech/xcm-format/tree/fefa511687469c9a34759465d88e3b07e3ed6d22
https://docs.substrate.io/v3/runtime/origins/
https://docs.substrate.io/v3/runtime/origins/
http://www.shawntabrizi.com/xcm-workshop/#/
http://www.shawntabrizi.com/xcm-workshop/#/

Appendix A

Message Types

The polkadot framework defines three types of messages that can be exchanged. These messages
are the following:

• Downward Message Passing (DMP): From Relay-chain to Parachains

• Upward Message Passing (UMP): From Parachains to Relay-chain

• HoRizontal Message Passing (HRMP): From Parachains to Parachains

Parachain

Relay-chain

ump dmp hrmp

Parachain

Horizontal Message
HRMP (futur XCMP)UMP: Upward

Message

DMP:
Downward
Message

Figure A.1: Polkadot message types

As shown on Figure A.1, some pallets handle messages on relay-chain. As such, UMP and DMP
messages are temporarily stored on the relay-chain before being processed or dispatched to
the parachain. At the time of writing1, parachain-to-parachain is implemented through HRMP
and thus have to transit via the relay-chain. In the futur PC-to-PC (Cross-Consensus Messaging
Protocol (XCMP)) communications are expected to be performed via direct communication
between parachains.

1December 26th, 2021

Ref: 21-12-908-REP 45 Quarkslab SAS

Appendix B

XCM Types

This appendix shows basic XCM types used and their differences from version to version.

None()
All()
AllFungible()
AllNonFungible()
AllAbstractFungible(id: Vec<u8>)
AllAbstractNonFungible(class: Vec<u8>)
AllConcreteFungible(id: MultiLocation)
AllConcreteNonFungible(class: MultiLocation)
AbstractFungible(id: Vec<u8>, amount: u128)
AbstractNonFungible(class: Vec<u8>, instance: AssetInstance)
ConcreteFungible(id: MultiLocation, amount: u128)
ConcreteNonFungible(class: MultiLocation, instance: AssetInstance)

xcm::v0::multi_asset::MultiAsset xcm::v1::multiasset::MultiAssets(Vec<MultiAsset>)

MultiAsset(id: AssetId, fun: Fungibility)
Fungible(u128)
NonFungible(AssetInstance)

xc
m

::V
er

si
on

ed
M

ul
tiA

ss
et

s

V0(Vec<v0::MultiAsset>) V1(MultiAssets)

Concrete(MultiLocation)
Abstract(Vec<u8>)

Undefined()
Index(u128)
Array4([u8; 4])
Array8([u8; 8])
Array16([u8; 16])
Array32([u8; 32])
Blob(Vec<u8>)

xcm::v1::multiasset::MultiAssetFilter

Definite(MultiAssets)
Wild(WildMultiAsset)

All()
AllOf(id: AssetId, fun: WildFungibility)

Fungible()
NonFungible()

Figure B.1: XCM Assets

Null()
X1(Junction)
X2(Junction, Junction)
[....]

xcm::v0::multi_location::MultiLocation xcm::v1::multilocation::MultiLocation

MultiLocation(parents: u8, interior: Junctions)
Here()
X1(Junction)
X2(Junction, Junction)
[...]

xcm::v1::multilocation::Junctions

Parent()
Parachain(u32)
AccountId32(network: NetworkId, id: [u8; 32])
AccountIndex64(network: NetworkId, index: u64)
AccountKey20(network: NetworkId, key: [u8; 20])
PalletInstance(u8)
GeneralIndex(u128)
GeneralKey(Vec<u8>)
OnlyChild()
Plurality(id: BodyId, part: BodyPart)

Parent()
[idem v0]

xc
m

::V
er

si
on

ed
M

ul
tiL

oc
at

io
n

Figure B.2: XCM Multilocations

Ref: 21-12-908-REP 46 Quarkslab SAS

xc
m

::V
er

si
on

ed
Xc

m

WithdrawAsset(assets: Vec<MultiAsset>, effects: Vec<Order<Call>>)

ReserveAssetDeposit(assets: Vec<MultiAsset>, effects: Vec<Order<Call>>)

TeleportAsset(assets: Vec<MultiAsset>, effects: Vec<Order<Call>>)

QueryResponse(query_id: u64, response: Response)

TransferAsset(assets: Vec<MultiAsset>, dest: MultiLocation)

TransferReserveAsset(assets: Vec<MultiAsset>, dest: MultiLocation, effects: Vec<Order<()>>)

Transact(origin_type: OriginKind, require_weight_at_most: u64, call: DoubleEncoded<Call>)

HrmpNewChannelOpenRequest(sender: u32, max_message_size: u32, max_capacity: u32)

HrmpChannelAccepted(recipient: u32)

HrmpChannelClosing(initiator: u32, sender: u32, recipient: u32)

RelayedFrom(who: MultiLocation, message: alloc::boxed::Box<Xcm<Call>>)

WithdrawAsset(assets: MultiAssets, effects: Vec<Order<Call>>)

ReserveAssetDeposited(assets: MultiAssets, effects: Vec<Order<Call>>)

ReceiveTeleportedAsset(assets: MultiAssets, effects: Vec<Order<Call>>)

QueryResponse(query_id: u64, response: Response)

TransferAsset(assets: MultiAssets, beneficiary: MultiLocation)

TransferReserveAsset(assets: MultiAssets, dest: MultiLocation, effects: Vec<Order<()>>)

Transact(origin_type: OriginKind, require_weight_at_most: u64, call: DoubleEncoded<Call>)

HrmpNewChannelOpenRequest(sender: u32, max_message_size: u32, max_capacity: u32)

HrmpChannelAccepted(recipient: u32)

HrmpChannelClosing(initiator: u32, sender: u32, recipient: u32)

RelayedFrom(who: InteriorMultiLocation, message: alloc::boxed::Box<Xcm<Call>>)

SubscribeVersion(query_id: u64, max_response_weight: u64)

UnsubscribeVersion()

WithdrawAsset(MultiAssets, effects: Vec<Order<Call>>)

ReserveAssetDeposited(MultiAssets, effects: Vec<Order<Call>>)

ReceiveTeleportedAsset(MultiAssets, effects: Vec<Order<Call>>)

QueryResponse(query_id: QueryId, response: Response, max_weight: u64)

TransferAsset(assets: MultiAssets, beneficiary: MultiLocation)

TransferReserveAsset(assets: MultiAssets, dest: MultiLocation, effects: Vec<Order<()>>, xcm: Xcm<()>)

Transact(origin_type: OriginKind, require_weight_at_most: u64, call: DoubleEncoded<Call>)

HrmpNewChannelOpenRequest(sender: u32, max_message_size: u32, max_capacity: u32)

HrmpChannelAccepted(recipient: u32)

HrmpChannelClosing(initiator: u32, sender: u32, recipient: u32)

RelayedFrom(who: InteriorMultiLocation, message: alloc::boxed::Box<Xcm<Call>>)

SubscribeVersion(query_id: QueryId, max_response_weight: u64)

UnsubscribeVersion()

ClearOrigin()

ClearError()

DescendOrigin(InteriorMultiLocation)

ReportError(query_id: QueryId, dest: MultiLocation, max_response_weight: u64)

DepositAsset(assets: MultiAssetFilter, max_assets: u32, beneficiary: MultiLocation)

DepositReserveAsset(assets: MultiAssetFilter, max_assets: u32, dest: MultiLocation, effects: Vec<Order<()>>, xcm: Xcm<()>)

ExchangeAsset(give: MultiAssetFilter, receive: MultiAssets)

InitiateReserveWithdraw(assets: MultiAssetFilter, reserve: MultiLocation, effects: Vec<Order<()>>, xcm: Xcm<()>)

InitiateTeleport(assets: MultiAssetFilter, dest: MultiLocation, effects: Vec<Order<()>>, xcm: Xcm<()>)

QueryHolding(query_id: QueryId, dest: MultiLocation, assets: MultiAssetFilter, max_response_weight: u64)

BuyExecution(fees: MultiAsset, weight_limit: WeightLimit, debt: u64, halt_on_erro: bool, instructions: Vec<Xcm<Call>>)

RefundSurplus()

SetErrorHandler(Xcm<Call>)

SetAppendix(Xcm<Call>)

ClaimAsset(assets: MultiAssets, ticket: MultiLocation)

Trap(u64)

xcm::v0::Xcm xcm::v1::Xcm xcm::v2::Instruction

Null()

DepositAsset(assets: Vec<MultiAsset>, dest: MultiLocation)

DepositReserveAsset(assets: Vec<MultiAsset>, dest: MultiLocation, effects: Vec<Order<()>>)

ExchangeAsset(give: Vec<MultiAsset>, receive: Vec<MultiAsset>)

InitiateReserveWithdraw(assets: Vec<MultiAsset>, reserve: MultiLocation, effects: Vec<Order<()>>)

InitiateTeleport(assets: Vec<MultiAsset>, dest: MultiLocation, effects: Vec<Order<()>>)

QueryHolding(query_id: u64, dest: MultiLocation, assets: Vec<MultiAsset>)

BuyExecution(fees: MultiAsset, weight: u64, debt: u64, halt_on_error: bool, xcm: Vec<Xcm<Call>>)

xcm::v0::order::Order xcm::v1::order::Order

Noop()

DepositAsset(assets: MultiAssetFilter, max_assets: u32, beneficiary: MultiLocation)

DepositReserveAsset(assets: MultiAssetFilter, max_assets: u32, dest: MultiLocation, effects:
Vec<Order<()>>)
ExchangeAsset(give: MultiAssetFilter, receive: MultiAssets)

InitiateReserveWithdraw(assets: MultiAssetFilter, reserve: MultiLocation, effects: Vec<Order<()>>)

InitiateTeleport(assets: MultiAssetFilter, dest: MultiLocation, effects: Vec<Order<()>>)

QueryHolding(query_id: u64, dest: MultiLocation, assets: MultiAssetFilter)

BuyExecution(fees: MultiAsset, weight: u64, debt: u64, halt_on_error: bool, instructions:
Vec<Xcm<Call>>)

Figure B.3: XCM Instructions

Assets(Vec<MultiAsset>)

xcm::v0::Response
Assets(MultiAssets)
Version(super::Version)

Null()
Assets(MultiAssets)
ExecutionResult(Option<(u32, Error)>)
Version(super::Version)

xcm::v1::Response xcm::v2::Response

xcm::VersionedResponse

Figure B.4: XCM Response

xcm::v2::traits

Complete(Weight)
Incomplete(Weight, Error)
Error(Error)

xcm::v2::traits::Outcome
Overflow()
Unimplemented()
UntrustedReserveLocation()
UntrustedTeleportLocation()
MultiLocationFull()
MultiLocationNotInvertible()
BadOrigin()
InvalidLocation()
AssetNotFound()
FailedToTransactAsset()

NotWithdrawable()
LocationCannotHold()
ExceedsMaxMessageSize()
DestinationUnsupported()
Transport()
Unroutable()
UnknownClaim()
FailedToDecode()
TooMuchWeightRequired()
NotHoldingFees()

TooExpensive()
Trap(u64)
UnhandledXcmVersion()
WeightLimitReached(Weight)
Barrier()
WeightNotComputable()

xcm::v2::traits::Error

pa
lle

t_
xc

m
::p

al
le

t

pallet_xcm::pallet::Event
Unreachable()
SendFailure()
Filtered()
UnweighableMessage()
DestinationNotInvertible()
Empty()
CannotReanchor()
TooManyAssets()
InvalidOrigin()
BadVersion()
BadLocation()
NoSubscription()
AlreadySubscribed()

pallet_xcm::pallet::Error
Attempted(xcm::latest::Outcome)
Sent(MultiLocation, MultiLocation, Xcm<()>)
UnexpectedResponse(MultiLocation, QueryId)
ResponseReady(QueryId, Response)
Notified(QueryId, u8, u8)
NotifyOverweight(QueryId, u8, u8, Weight, Weight)
NotifyDispatchError(QueryId, u8, u8)
NotifyDecodeFailed(QueryId, u8, u8)
InvalidResponder(MultiLocation, QueryId, Option<MultiLocation>)
InvalidResponderVersion(MultiLocation, QueryId)
ResponseTaken(QueryId)
AssetsTrapped(H256, MultiLocation, VersionedMultiAssets)
VersionChangeNotified(MultiLocation, XcmVersion)
SupportedVersionChanged(MultiLocation, XcmVersion)
NotifyTargetSendFail(MultiLocation, QueryId, XcmError)
NotifyTargetMigrationFail(VersionedMultiLocation, QueryId)

kusama_runtime::Event

ump::pallet

ump::pallet::Event

UnknownMessageIndex()
WeightOverLimit()

ump::pallet::Error

InvalidFormat(MessageId)
UnsupportedVersion(MessageId)
ExecutedUpward(MessageId, Outcome)
WeightExhausted(MessageId, Weight, Weight)
UpwardMessagesReceived(ParaId, u32, u32)
OverweightEnqueued(ParaId, MessageId, OverweightIndex, Weight)
OverweightServiced(OverweightIndex, Weight)

dmpqueue::pallet

dmpqueue::pallet::Event

Unknown()
OverLimit()

dmpqueue::pallet::Error

InvalidFormat(MessageId)
UnsupportedVersion(MessageId)
ExecutedDownward(MessageId, Outcome)
WeightExhausted(MessageId, Weight, Weight)
OverweightEnqueued(MessageId, OverweightIndex, Weight)
OverweightServiced(OverweightIndex, Weight)

Figure B.5: XCM Events and common traits

Ref: 21-12-908-REP 47 Quarkslab SAS

	Project Information
	Executive Summary
	Disclaimer
	Findings summary

	Context and Scope
	Context
	Safety and Security Properties
	Scope
	Methodology
	Audit Settings
	Polkadot-launch configuration

	XCM pallet
	Pallet XCM
	Pallet Configuration

	XCM Runtime Configuration
	AssetTransactor
	OriginConverter
	IsReserve and IsTeleporter
	LocationInverter
	Barrier
	Weigher
	Trader
	ResponseHandler
	AssetTrap and AssetClaims
	SubscriptionService

	XCM Executor
	Arithmetic Operations
	Version Negotiation
	Dynamic Testing
	Origin and execution privileges

	Asset Transfer
	Withdraw and Deposit
	Teleport and Reserve Transfers

	Conclusion
	Glossary
	Acronyms
	Bibliography
	Message Types
	XCM Types

