Technical assessment of herumz libraries

The mel and bls libraries

Ref.

Version

Date

Made for
Conducted by

Quarkslal

SECURING EVERY BIT OF YOUR DATA

20-07-732-REP

1.2

November 13th, 2020

The Ethereum Foundation
Quarkslab

Quarkslab SAS
13 rue Saint Ambroise
75011 Paris, France

Contents

1 Project Information
2 Executive Summary
2.1 Context e
2.2 Methodology e
2.3 Chronology o e
2.3.1 Communication channel00,
2.3.2 Deliverables e e
2.4 Report synthesis L L
2.4.1 Synthesis e
2.4.2 Findings and recommendations
3 Code overview
3.1 Audited versions e e e e e e
3.2 The blslibrary e
321 OVErviewo e e e e e e
3.2.2 Serialization/Deserialization o oL
3.2.3 General observations L L L oL
3.3 The mel library o Lo e
3.3 1 Overview e e
3.3.2 Backends: Internals o
3.3.3 Backends: Conclusion L
3.3.4 Serialization/Deserialization L.
3.3.5 General observations o
4 Adeherence with the specifications
4.1 The blslibrary e e e e e
4.1.1 Bird's eye view on pairings for Ethereum 2.0.
4.1.2 Usage of the library for the Ethereum 2.0 purpose
4.1.3 General usage of the bls project oL
4.2 The mcl library e e e
4.2.1 The hash_to_curve function
4.2.2 The mulCT functions i
5 Conclusion
5.1 Regarding the code review L o
5.2 Security CONCErNS v v vt e e e e
6 Findings and Recommendations
6.1 Issue: Lack of documentation L o 0o,
6.2 Issue: Inconsistent back end interface (mel library)
6.3 Issue: Ambiguous interaction between back ends (mcl library)
6.4 Issue: Ambiguous library parametrization (mcl library)
6.5 Issue: RFCs API is not completely followed
6.6 Issue: Management of the secrets
6.7 Issue: Pointer dereference issues
6.8 Issue: Potential inconsistency between compile-time and run-time parameters in

Op structure initialization (mel library)o Lo Lo

27
27
27
28
29
35
35
39

40
40
41

Public

6.9 Issue: Tests do not contemplate the main possible parameters in an automatic
way (mel library) 46
6.10 Issue: Potential issues with the FpGenerator (mcl library) 46
6.11 Issue: Libraries not maintained for a general purpose 47
6.12 Issue: Multiple and potentially inconsistent build systems (mecl library) 47
6.13 Issue: Inconsistent use of mcl API on behalf of the bls library 47
Bibliography 48

Ref.: 20-07-732-REP Quarkslab SAS ii

Public

1. Project Information

Document History

Version ‘ IDEHS ‘ Details ‘ Authors ‘
1.2 2020-11-27 | Final version Laurent Grémy & Christian Heit-
man
1.1 2020-11-13 | Draft version (close to | Laurent Grémy & Christian Heit-
the final version) man
1.0 2020-10-23 | Draft version Laurent Grémy & Christian Heit-
man
Quarkslab
Contact ‘ Position ‘ E-mail address ‘
Frédéric Raynal Quarkslab CEO fraynal@quarkslab.com
Matthieu Duez Service Manager mduez@quarkslab.com
Laurent Grémy R&D Engineer lgremy@quarkslab.com
Christian Heitman R&D Engineer cheitman@quarkslab.com

The Ethereum Foundation

Contact ‘ Position E-mail address

Kirk Baird Software Engineer at Sigma | kirk@sigmaprime.io
Prime for the development of
lighthouse and Ethereum 2.0
client.

Carl Beekhuizen Ethereum 2.0 Researcher at the | carl.beekhuizen@ethereum.org
Ethereum Foundation

Mamy Ratsimbazafy | Blockchain scalability =~ and | mamy@status.im
FEthereum Researcher at Status

Danny Ryan Ethereum 2.0 Researcher at the | danny@ethereum.org
Ethereum Foundation

—

Ref.: 20-07-732-REP Quarkslab SAS

Public

2. Executive Summary

2.1 Context

The Ethereum Foundation is currently launching the 2.0 version of the Ethereum blockchain, see
the Ethereum 2.0 website. One of the modifications with this new iteration of the blockchain is
the usage of a proof of stake algorithm instead of a proof of work algorithm in order to reach the
consensus to append a new block to the blockchain. This new consensus algorithm is based at
some point on votes and commitments which must be signed. To require less storage capacities,
these different signatures may at some point be aggregated. In order to aggregate signatures,
the choice of the Ethereum 2.0 designers was to use BLS signatures [BLSsig] [BLSsigRFC].

BLS signatures are defined over a pairing, which can be viewed at a high-level point as a
map e from two groups (Gi,+) and (Ga,+) of prime order r to a group (Gr,-) of order r.
Upon the family of pairing-friendly curves that are proposed in cryptography to match efficient
computations and a reasonable security level, a BLS curve [BLScurve| denoted by BLS12_381 in
[Pairing] was chosen. To avoid the confusion between the two BLS acronyms, even if sometimes
the context will help distinguish the two, we will use the term BLS12_ 381 to speak about
the standardized BLS curve chosen to be the pairing-friendly curve used by the Ethereum 2.0
blockchain, and BLSsig when referring to the signature algorithm or a cryptographic primitive
related to this algorithm.

Since signature plays an important role in the consensus process, it is important to review the
implementation of the primitives needed by Ethereum 2.0 and built upon BLSsig. This report
will focus on implementations provided in the herumi project.

2.2 Methodology

The audit has been divided into three main stages, which were:

e Stage 1: focused on the architecture of the code, the interaction between the bls and the
mcl libraries, the different backends.

o Stage 2: focused on identifying the different relevant parts in the specifications, especially
the RFCs.

e Stage 3: focused on the code itself, its design, its adherence with the specifications.

2.3 Chronology

The audit was performed by two security engineers for a total of 68 man-days between the 16th
of September and the 13th of November. Some details about the chronology are provided below:

e July 3rd, 2020: quote sent in reply to the RFP.

e September 16th, 2020: beginning of the audit and call with the Ethereum Foundation,
setup of the communication channel gathering the different interlocutors.

e October 2nd, 2020: one issue and one pull request submitted to the mcl project.

o October 23th, 2020: intermediate draft (version 1.0) sent to the Ethereum Foundation.
e November 4th, 2020: two issues submitted to the bls project.

o November 13th, 2020: second draft (version 1.1) sent to the Ethereum Foundation.

Ref.: 20-07-732-REP Quarkslab SAS 2

https://ethereum.org/en/eth2/
https://github.com/herumi
https://notes.ethereum.org/@Uj8LfAR6SACOz4TM6m07kw/HJd-uSTh8

Public

o November 27th, 2020: final version (version 1.2) sent to the Ethereum Foundation.

2.3.1 Communication channel

The Ethereum Foundation established a Telegram channel gathering the author of the herumi
librairies Shigeo Mitsunari, the Ethereum Foundation contacts and the two Quarkslab auditors.

2.3.2 Deliverables

The deliverables are of two types:

o three issues and one pull request submitted to both the bls and mcl projects: Issue 85,
Pull request 86, Issue 66 and Issue 67;

e the present report.

2.4 Report synthesis

2.4.1 Synthesis

Among all the herumi repositories listed in https://github.com/herumi which may be used to
implement an Ethereum 2.0 client, two projects are of main interest:

o https://github.com/herumi/mcl: portable and fast pairing-based cryptography library
(BSD-3-Clause license).

o https://github.com/herumi/bls: implementation of BLS threshold signature, which sup-
ports the BLS Signatures specified at Ethereum 2.0 Phase 0 (BSD-3-Clause license).

They are indeed the building blocks of the Go and Rust bindings for example. The Go and
Rust bindings were also reviewed to better understand the use of some functions of the core
projects.

2.4.2 Findings and recommendations

Some of our findings were submitted as GitHub issues or pull requests. We provide here a
summary of the four most significant findings and recommendations, the exhaustive ones are
available in Section 6.

A first recommendation is to document both libraries in detail (as well as to comment the code
base and explain the design and technical decisions made), see Section 6.1. Indeed for now,
there is little to no documentation of the projects. This will not only help significantly the end
user at the time of building and using the library, but also will help in the maintainability and
further development of both libraries (as well as future audits).

The three other recommendations are about the mcl library. They are focused on the back ends
of the mcl library, especially their interface in Section 6.2, their interaction in Section 6.3 and
their configuration in Section 6.4.

As explained in Findings and Recommendations, these do not represent an immediate risk in
terms of security. However, they do degrade the overall reliability and correctness of the libraries

Ref.: 20-07-732-REP Quarkslab SAS 3

https://github.com/herumi/mcl/issues/85
https://github.com/herumi/mcl/pull/86
https://github.com/herumi/bls/issues/66
https://github.com/herumi/bls/issues/67
https://github.com/herumi
https://github.com/herumi/mcl
https://github.com/herumi/bls
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md#bls-signatures

Public

and should be addressed promptly, before integrating them into a production-like context. Due
to them, it is possible subtle and important bugs go unnoticed.

To conclude, we believe that tackling these aspects, specially providing a clear, well-define and
common interface to the back ends, will substantially improve the quality of the library and
make it more suitable for code maintainability as well as potential future review.

Ref.: 20-07-732-REP Quarkslab SAS 4

Public

3. Code overview

3.1 Audited versions

We list below the audited versions of the two projects listed in Section 2.4.1:
o mecl library: commit de65ed2cccl13d6236b30b627e4e34050f04a5fe (version 1.23);
e bls library: commit ef663751b56f3e55f035b0b4b1444d5273c5ae36e.

For information, the number of lines of C++ code' is about:
e 50731 for the mcl library;
e 4466 for the bls library.

The large majority (50722 lines for mcl and 4465 lines for bls) of this code corresponds to Shigeo
Mitsunari, the maintainer of the libraries.

3.2 The bls library

3.2.1 Overview

The bls library depends heavily on the mcl library. Most of the functions it provides are either a
direct call to a function of the mcl library or a short combination of them; only a few have a more
complex implementation. Therefore, most of our remarks will be done in Section 3.3. Here, we
will only comment on the serialization/deserialization process and some general observations.

3.2.2 Serialization/Deserialization

Generally speaking, serialization/deserialization algorithms are problematic functions since mal-
formed, corrupted or even manipulated data can lead to unhandled errors.

As previously mentioned, most of the serialization functions resort directly to the mel serializa-
tion functions (which will be reviewed in their corresponding section). However, there are some,
such as the uncompressed variations, that are implemented here. The reason of this approach
remains unknown but they still rely on the mcl library.

According to [BLSsigRFC], the serialization/deserialization process should follow the format
specified by ZCash?.

When analyzing the implementation of the uncompressed variations we noted some issues related
to the specification, mostly on the deserialization ones.

Let us analyze the blsPublicKeyDeserealizeUncompress function®, presented below.

! Found by using find . -type £ \(-name "*.c" —o -name "*.cpp" —o -name "*.h" -o -name "#*.hpp"
\) -exec wc -1 {} \; | awk '{s+=$1} END {print s}'.

2 A more detailed version can be found in Appendix C of [BLSsigRFC].

3 The body of the function is contained within an #ifdef block, which according to the README file is enabled
for the ETH2.0 spec. The same remarks apply to the blsSignatureDeserializeUncompressed function.

Ref.: 20-07-732-REP Quarkslab SAS 5

https://github.com/zkcrypto/pairing/blob/bac16ab134ccebf85e58db2ca82ef56dba73ae56/src/bls12_381/README.md#serialization
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-08#appendix-C

660

661
662
663
664
665
666
667
668
669
670
671
672

673
674
675
676
677
678
679
680
681
682
683

Public

Listing 3.1: blsPublicKeyDeserealizeUncompress function
(src/bls_c_impl.hpp#L660-L683).

mclSize blsPublicKeyDeserializeUncompressed(blsPublicKey *pub, const void *buf,
—mclSize bufSize)
{
#1ifdef BLS_ETH
if (g_curveType != MCL_BLS12_381) return O0;
const mclSize retSize = serializedPublicKeySize * 2;
if (bufSize < retSize) return 0;
const uint8_t *src = (const uint8_t*)buf;
G1& x = *cast(&pub->v);
if (isZeroFormat(src, retSize)) {
x.clear();
} else {
if (x.x.deserialize(src, serializedPublicKeySize) == 0) return O;
if (x.y.deserialize(src + serializedPublicKeySize, serializedPublicKeySize)
—== 0) return 0;
x.z = 1;
}
if (!'x.isValid()) return O;
return retSize;

#else
(void)pub;
(void)buf;
(void)bufSize;
return 0;

#endaf

}

The first issue concerns the zero element. According to the specification, the three most sig-
nificant bits of a G1 or G2 encoding are used to provide information about the underlying
element. The second most significant bit indicates that the point is at infinity. If this bit is
set, the remaining bits of the group element's encoding should be set to zero. This is checked
with the function isZeroFormat (line 668). The issue here is that a malformed element with
the second most significant bit set to one and not all of the remaining bits set to zero will fail
this check. In this case, instead of returning INVALID as the specification states, it is processed
as a non-zero element®®. It is worth noting that after the deserialization there is a validation
over the resulting element: x.isValid (line 615). As far as we can tell, the function does not
consider the mentioned case. Therefore, the deserialization function may be loading an invalid
element.

Another issue that we noted is that the function does not check whether the first and third most
significant bits are set or not (neither mask them before calling the deserialize function at
lines 671 and 672). These bits are always set to zero when dealing with a valid (uncompressed)
serialized input. This suggests that the function is not prepared to deal with malformed serial-
ized elements.

Some extra remarks that may impact the correct behaviours of the functions:

e The function also assumes that the elements to deserialize are normalized, since it sets the
z component of the underlying element to 1 (line 673). In case of a malformed element,
this approach may lead to an error (assuming it is not detected by the isValid function).

4 Refer to Item 4 of the Point deserialization procedure section.
5 This does not happen in the compressed variant of the function as we will see later.

Ref.: 20-07-732-REP Quarkslab SAS 6

https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-08#appendix-C.2

185
186
187
188
189

160
161
162
163
164

Public

e Both the serialize and deserialize methods are called using the default value
(IoSerialize) for its third parameter (ioMode). This may lead to errors in the future as
it may be changed inadvertently in the mcl library (specially, given the fact that it is not
clear why it was chosen as the default one).

Important: We recommend adapting these functions to follow closely the specification as
well as contemplate the case of malformed inputs.

3.2.3 General observations
mocl library API usage

We noticed that many of the functions in bls do not use the API provided by mcl. Instead, they
are reimplemented in bls calling internal functions of mcl.

For example, let us compare the blsSecretKeySetLittleEndian (Listing 3.2) and
mclBnFr_setLittleEndian (Listing 3.3) functions:

Listing 3.2: blsSecretKeySetLittleEndian function (src/
bls_c_impl.hpp#L185-L189).

int blsSecretKeySetLittleEndian(blsSecretKey *sec, const void *buf, mclSize bufSize)
{

cast(&sec->v)->setArrayMask((const char *)buf, bufSize);

return O;

Listing 3.3: mclBnFr_setLittleEndian function (mcl/
include/mcl/impl/bn_c_impl.hpp#L160-L164).

int mclBnFr_setLittleEndian(mclBnFr *x, const void *buf, mclSize bufSize)
{

cast(x)->setArrayMask((const char *)buf, bufSize);

return O;

}

Considering &sec->v is referring to mc1BnFr (Listing 3.4), we can see that both functions are
the same in essence.

Ref.: 20-07-732-REP Quarkslab SAS 7

https://github.com/herumi/mcl/blob/master/api.md

57
58

364
365
366
367

Public

Listing 3.4: blsSecretKey struct (include/bls/bls.
h#L56-158).

typedef struct {
mclBnFr v;
} blsSecretKey;

The same pattern repeats in many of the functions of bls. The reason behind this approach is
not clear. However, it has disadvantages as any change in mcl API is not directly reflected on
the bls side.

Pointer dereference

There is no null pointer check in the API provided by the library. Therefore, it assumes that all
received pointers are valid ones. Let us consider the blsPublicKeySerialize function (Listing
3.5):

Listing 3.5: blsPublicKeySerialize function (src/
bls_c_impl.hpp#L364-L367).

mclSize blsPublicKeySerialize(void *buf, mclSize maxBufSize, const blsPublicKey *pub)
{
return cast(&pub->v)->serialize(buf, maxBufSize);

}

The field v of the pointer to the public key pub is accessed without first checking if it is valid.
This pattern repeats across the entire library.

Note: The same pattern repeats in the API of the mcl library.

3.3 The mcl library

3.3.1 Overview

This library is the cornerstone of bls. It is a quite complex library with multiple build modes.

This library allows the user to select among three different back ends that implement the basic
operations upon which more complex ones are built. These are: a) GMP, b) LLVM, and c)
XBYAK.

The efforts of this code review were focused on the classes, structures and functions used by
the bls library. More precisely, the classes FpT and EcT were the starting points in the process
of understanding the code base.

In the following sections we will describe how each back end works and implements the func-
tionality needed by bls. Along the way, we will make remarks about the code and provide
recommendations to improve potential issues.

It is worth noting that there is little to no documentation available. The code base has very
few comments as well. Therefore, a lot of time and effort was put into understanding the design
and inner workings of the library.

Ref.: 20-07-732-REP Quarkslab SAS 8

496

Public

3.3.2 Back ends: Internals
Overview

The back ends mainly provide the operations of FpT®. As mentioned, there are three different
ones, each trying to improve the performance of the previous.

To better understand how each back end is implemented we first need to describe the FpT class.

The FpT class provides multiple operations such as add, sub, neg, mul, sqr, etc. The imple-
mentation of these operations is separated from the class. They are encapsulated within the Op
structure. The FpT class has a static field op_ of type struct Op and the methods correspond-
ing to the operations are mere wrappers that invoke the proper method of Op. For example,
the following code snippet represents the add method:

Listing 3.6: FpT: :add method (include/mcl/fp.hpp#L496).

static inline void add(FpT& z, const FpT& x, const FpT& y) { op_.fp_add(z.v_, x.v_, y.
—V_, op_.p);

As mentioned, the method calls the fp_add function from the Op structure.

The Op structure contains pointers to the basic operations of FpT (as well as of Fp2T and
FpDblT). The implementation of these operations depends on the selected back end. When the
structure is initialized, all the function pointers are set to the corresponding value.

In the following sections we will describe each back end in more detail.

The GMP back end

The MCL_USE_GMP flag enables the GMP back end. The functions are implemented in the
src/low_func.hpp file. They all follow a similar pattern, presented below:

Listing 3.7: Code structure of the Fp operations.

template<size_t N, class Tag = Gtag>
struct OperationName {
static inline void func(/* Parameters. */)
{
/* Implementation. */
}
static const FuncPtr f;

};

template<size_t N, class Tag>
const FuncPtr OperationName<N, Tag>::f = OperationName<N, Tag>::func;

An operation is called using the OperationName<N, Tag>::f pointer. This particular design
allows to override the default” implementation of the operation (such is the case of the LLVM
back end, as we will see in the next section).

Below is the implementation of the addition operation, to exemplify the aforementioned code
structure:

5 They provide operations for Fp2T and FpDblT as well. However, we will focus on the ones from FpT as the
same design applies to all the classes.

7 We will refer again to the default implementation, later in this section, when we talk about the MCL_USE_VINT
flag.

Ref.: 20-07-732-REP Quarkslab SAS 9

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

Public

Listing 3.8: Implementation of the addition operation (src/
low_func.hpp#L424-1455).

// z[N] <= (z[N] + y[N]) 7 p[N]
template<size_t N, bool isFullBit, class Tag = Gtag>
struct Add {
static inline void func(Unit *z, const Unit *x, const Unit *y, const Unit *p)
{
if (isFullBit) {
if (AddPre<N, Tag>::f(z, x, y)) {
SubPre<N, Tag>::f(z, z, p);
return;
+
Unit tmp[N];
if (SubPre<N, Tag>::f(tmp, z, p) == 0) {
copyC<N>(z, tmp);
}
} else {
AddPre<N, Tag>::f(z, x, y);
Unit a = z[N - 1];
Unit b = p[N - 1];
if (a < b) return;

if (a > b) {
SubPre<N, Tag>::f(z, z, p);
return;

}

/* the top of z and p are same */
SubIfPossible<N, Tag>::f(z, p);

3

static const void4u f;

};

template<size_t N, bool isFullBit, class Tag>
const void4u Add<N, isFullBit, Tag>::f = Add<N, isFullBit, Tag>::func;

As shown in Listing 3.8, the function depends on many others (such as AddPre and SubPre)
that follow the same structure.

The last step missing in the description of the back end is the initialization of the Op structure,
place where the OperationName<N, Tag>::f pointer is assigned to the corresponding field of
the structure.

The initialization is done in the Op: :init function, located at src/fp.cpp#L382. This function
is complex given its many conditional compilation flags. However, the function setOp (and
set0p2 as well) assigns the fields of Op with the correct pointers. Continuing with the example
of the addition operation®, we have:

8 The assignment of the add operation depends on the value of the isFullBit. For the sake of brevity, we
only show the true case.

Ref.: 20-07-732-REP Quarkslab SAS 10

252

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Public

Listing 3.9: Assignment of the fp_add member of Op (src/
fp.cpp#L252).

op.fp_add = Add<N, true, Tag>::f;

The assignment of the rest of the operations of FpT follow the same logic (that is, declaration,
definition and assignment). We will talk about this in more detail in Initialization of the Op
structure.

It is worth noting that there is a preprocessor flag (MCL_USE_VINT) present in the implementation
of the operation (src/low_func.hpp) that allows the use of an alternative implementation of
the GMP library (just the required functions), called VINT. Listing 3.10 shows this:

Listing 3.10: Example of the use of the MCL_USE_VINT flag
(src/low_func.hpp#L59-L73).

// (carry, z[N]) <- z[N] + y[N]
template<size_t N, class Tag = Gtag>
struct AddPre {
static inline Unit func(Unit #*z, const Unit *x, const Unit *y)
{
#ifdef MCL_USE_VINT
return mcl::vint::addN(z, x, y, N);
#else
return mpn_add_n((mp_limb_t*)z, (const mp_limb_t*)x, (const mp_limb_t*)y, N);
#endif
T
static const u3u f;
bg
template<size_t N, class Tag>
const u3u AddPre<N, Tag>::f = AddPre<N, Tag>::func;

Therefore, when no back end is selected, all operations are implemented using the vint module
(that is, what we referred earlier as the default implementation).

The LLVM back end

The implementation of the LLVM back end is more complex than the previous one.

In this case, the operations of FpT are generated from scratch in LLVM IR (and subsequently
compiled to assembly code). The file src/11vm_gen.hpp provides many classes and structures
to simplify the process, such as Generator, Operand, Function, etc. The Generator structure,
for example, allows to generate code for many LLVM instructions such as: add, sub, and, etc.

Note: One important thing to note is that the Generator component generates LLVM code
entirely by its own without using any of the tools provided by LLVM. It is not clear the
reason behind this approach, possibly to avoid the dependency on LLVM libraries. However,
implementing all the infrastructure to generate LLVM IR code has some drawbacks. LLVM
libraries are widely used and therefore very well tested and mature. In addition, relying on
them may provide all the latest features and bug fixes as soon as they are released.

The file src/gen. cpp contains the implementation of the operations of FpT using the mentioned
components as building blocks. For instance, Listing 3.11 is the implementation of the addition

Ref.: 20-07-732-REP Quarkslab SAS 11

483
484
485
486
487
488
489
490
491
492
493
494

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

Public

operation:

Listing 3.11: Implementation of the addition operation (src/
gen.cpp#L483-1528).

void gen_mcl_fp_add(bool isFullBit = true)
{
resetGloballdx();
Operand pz(IntPtr, unit);
Operand px(IntPtr, unit);
Operand py(IntPtr, unit);
Operand pp(IntPtr, unit);
std::string name = "mcl_fp_add";
if (!isFullBit) {
name += "NF";
}
name += cybozu::itoa(N) + "L" + suf;
mcl_fp_addM[N] = Function(name, Void, pz, px, py, PP);
verifyAndSetPrivate (mcl_fp_addM[N]);
beginFunc(mcl_fp_addM[N]);
Operand x = loadN(px, N);
Operand y = loadN(py, N);
if (isFullBit) {
x = zext(x, bit + unit);
y = zext(y, bit + unit);
Operand tO0 = add(x, y);
Operand t1 = trunc(tO, bit);
storeN(tl, pz);
Operand p = loadN(pp, N);
p = zext(p, bit + unit);
Operand vc = sub(t0, p);
Operand c = lshr(vc, bit);
¢ = trunc(c, 1);
Label carry('"carry");
Label nocarry('"nocarry");
br(c, carry, nocarry);
putLabel (nocarry) ;
storeN(trunc(vc, bit), pz);
ret (Void) ;
putLabel (carry) ;
} else {
x = add(x, y);
Operand p = loadN(pp, N);
y = sub(x, p);
Operand c = trunc(lshr(y, bit - 1), 1);
x = select(c, x, y);
storeN(x, pz);
}
ret (Void) ;
endFunc() ;

In this example, we can see how the prototype of the function representing the Add operation
is created at line 495. Then, the body is implemented between lines 497 (beginFunc) and 527

(endFunc).

Making sure that the resulting operation is implemented correctly is difficult since, in this

particular case, it even involves branches. Therefore, testing is crucial to spot any error.

Ref.: 20-07-732-REP Quarkslab SAS

Public

There is no direct memory manipulation on behalf of the function that implements the operation.
Therefore, the risk of potential issues resulting from an error is low. However, the operation
itself does manipulate memory arrays and, given the nature of the implementation, it is difficult
to detect and assess any issue.

LLVM IR code is emitted each time a function representing an LLVM instruction is called.

The src/gen.cpp file is an executable by itself. When ran, it outputs the LLVM IR represen-
tation of the functions, referred as base64.11 in the CMakeList.txt file.

The base64.11 file is then compiled to finally obtain the functions in native code. This step
is not mandatory, as the assembly code of these functions is included in the project (src/asm
folder). However, this is the process by how they were obtained’.

As mentioned in the previous section, the functions involved in the initialization of the Op
structure follow a pattern as shown in Listing 3.12 (Add<...>::f holds the pointer to the
function itself).

Listing 3.12: Code structure of the FpT operations.

template<size_t N, bool isFullBit, class Tag>
const void4u Add<N, isFullBit, Tag>::f = Add<N, isFullBit, Tag>::func;

When the LLVM back end is enabled (that is, the MCL_USE_LLVM flag is set), the f
pointer of each operation is replaced with the pointer to the corresponding implementation.
Also, the low_func_llvm.hpp header is included (through conditional compilation, src/fp.
cpp#L14-L17). The latter file is where the overriding of the functions take place. In the case
of the addition operation'’, this is how it is achieved (Listing 3.13):

Listing 3.13: Override of the Add<n, true, tag>::f pointer
with the address of the LLVM implementation (src/
low_func_llvm.hpp#L34).

#define MCL_DEF_LLVM_FUNC2(n, tag, suf) \
e \
template<>const voidju Add<n, true, tag>::f = €mcl_fp_add ## n ## suf; \

The initialization step of the Op structure is the same as the in the case of the GMP back end.

The XBYAK back end

In this back end, the operations of FpT are generated dynamically with the help of the Xbyak
library. The FpGenerator structure is responsible for this. It extends the CodeGenerator class
provided by Xbyak, which has the functionality to generate native code in an easy way.

The FpGenerator class implements the operations in an assembly-like fashion. Continuing with
the addition operation example, below we show how it is implemented using Xbyak:

9 This process seems to differ depending on the build system used. When the CMake one is used, the assembly
generation is skipped (an object file is directly generated from the base64.11 file). In contrast, when the Makefile
is used they can be generated as described in the readme.md file of the project.

10 Multiple versions of the same function are generated, built using different parameters such as isFullBit.
For this reason, a suffix is added, as seen in the example, which identifies the version of a given function.

Ref.: 20-07-732-REP Quarkslab SAS 13

https://github.com/herumi/mcl#how-to-make-asm-files-optional

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

Public

Listing 3.14: Implementation of the addition operation (src/
fp_generator.hpp#L649-L696).

void3u gen_fp_add()

{

align(16);
void3u func = getCurr<void3u>();
if (pn_ <= 4) {
gen_fp_add_le4();
return func;

}

if (pn_ == 6) {
gen_fp_add6();
return func;

}

StackFrame sf(this, 3, 0, pn_ * 8);
const Regb64& pz = sf.pl[0];
const Regb64& px = sf.pl[l];
const Reg64& py = sf.pl[2];

const Xbyak::CodeGenerator:LabelType jmpMode = pn_ < 5 7 T_AUTO :

inLocalLabel();
gen_raw_add(pz, px, py, rax, pn_);
mov(px, pL_); // destroy pz
if (isFullBit_) {
jc(".over", jmpMode);
}

#4fdef MCL_USE_JMP

#else

#endzf

for (int i = 0; i < pn_; i++) {
mov(py, ptr [pz + (pn_ - 1 - i) * 8]); // destroy py
cmp(py, ptr [px + (pn_ - 1 - i) * 8]);
je(".exit", jmpMode);
jnz(".over", jmpMode) ;

}
L(".over");

gen_raw_sub(pz, pz, px, rax, pn_);
L(".exit");

gen_raw_sub(rsp, pz, px, rax, pn_);
je(".exit", jmpMode) ;
gen_mov(pz, rsp, rax, pn_);
if (isFullBit_) {
jmp(".exit", jmpMode) ;
L(".over");
gen_raw_sub(pz, pz, px, rax, pn_);

}
L(".exit");
outLocalLabel();

return func;

T_NEAR;

The first thing to notice is that the code resembles its LLVM counterpart (Listing 3.11). First
it "reads" the inputs from the stack frame (lines 662 to 664) and then it generates the code of

the operation (lines 667 to 694)'!.

11 Tt is worth noting that the implementation depends on the MCL_USE_JMP preprocessor definition, which is

Ref.: 20-07-732-REP Quarkslab SAS

381
382
383
384

385
386
387
388
389
390
391
392
393
394

Public

Some of the remarks made in the LLVM back end about the difficulty to assess the implementa-
tion apply to this one as well. However, in this case there is no easy way to access the generated
code. Another aspect to consider is that there is manipulation of dynamic memory, as the code
is emitted dynamically (discussed later).

Listing 3.15 shows gen_raw_add, one of the auxiliary functions of gen_fp_add, where we can
see better how much the code resembles plain assembly instructions. It is worth mentioning
that in order to achieve this "similarity" a lot of work has to be done by the Xbyak library.

Listing 3.15: Auxiliary function of gen_fp_add (src/
fp_generator.hpp#L381-L394)

/*
pz[] = pz[] + pyl]
*/
void gen_raw_add(const RegExp& pz, const RegExp& px, const RegExp& py, const Reg64& t,
— int n)

{
mov (t, ptr [px]);
add(t, ptr [pyl);
mov (ptr [pz], t);
for (int i = 1; i < n; i++) {
mov(t, ptr [px + i * 8]);
adc(t, ptr [py + i * 81);
mov(ptr [pz + i * 8], t);
}
}

Each time a function representing an assembly instruction is executed the corresponding opcodes
are emitted to the memory region that will hold the operations.

When the MCL_USE_XBYAK flag is defined, the Op structure includes the FpGenerator (through
conditional compilation) among its members, as seen in Listing 3.16:

only used here and there is no documentation describing how or when to use it.

Ref.: 20-07-732-REP Quarkslab SAS 15

203
204
205
206

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

Public

Listing 3.16: Conditional compilation of the FpGenerator in
the Op structure (include/mcl/op.hpp#L203-L206):

#ifdef MCL_USE_XBYAK
FpGenerator *fg;
mcl: :Array<Unit> invTbl;
#endif

The Op::init function calls indirectly the FpGenerator::init method, which dynamically
generates all the operations and sets the corresponding pointers in Op.

One last aspect to mention about this back end is that it only supports the case when the Unit'?
size is 8'%. It is worth noting that the entirety of the FpGenerator code depends on the value
of the preprocessor define MCL_SIZEOF_UNIT for the case it is equal to 8 (src/fp_generator.
hpp#L14).

Initialization of the Op structure

In the previous sections we described how each back end implements the operations of FpT. In
this section we will describe in more detail how the Op structure is initialized.

As we have already mentioned, the Op structure holds pointers to the many operations available,
which are used as building blocks to implement more complex ones.

The function Op: :init is responsible for the binding of each operation to its implementation
(that is, setting the pointer of an operation to the right function). To help with this task, there
are various auxiliary functions, most notably: setOp, setOp2 and initForMont.

Listing 3.17 is the implementation of the setOp function:

Listing 3.17: setOp function (src/fp.cpp#L287-L316).

template<size_t N>
void setOp(Op& op, Mode mode)
{
// generic setup
op.fp_isZero = isZeroC<N>;
op.fp_clear = clearC<N>;
op.fp_copy = copyC<N>;
if (op.isMont) {
op.fp_inv0p = fp_invMontOpC;
} else {
op.fp_invOp = fp_invOpC;

}
setOp2<N, Gtag, true, false>(op);
#4ifdef MCL_USE_LLVM
if (mode != fp::FP_GMP && mode != fp::FP_GMP_MONT) {
#4f MCL_LLVM_BMIZ2 == 1
const bool gmpIsFasterThanLLVM = false;//(N == 8 &% MCL_SIZEOF UNIT == 8);
Xbyak: :util: :Cpu cpu;
if (cpu.has(Xbyak::util::Cpu::tBMI2)) {
setOp2<N, LBMI2tag, (N * UnitBitSize <= 384), gmpIsFasterThanLLVM>(op);

(continues on next page)

2 The Unit type is defined in include/mc1l/gmp_util.hpp#L56-L60, and can be of size 4 or 8.
13 This can be clearly seen in the function of Listing 3.15, since the scale parameter of the index is fixed at 8.

Ref.: 20-07-732-REP Quarkslab SAS 16

307
308
309
310
311
312
313
314
315
316

246
247
248
249
250
251
252
253
254
255
256

258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276

278
279
280
281
282
283

Public

(continued from previous page)

} else
#endzf
{
setOp2<N, Ltag, (N * UnitBitSize <= 384), false>(op);
}
}
#else
(void)mode;
#endaf
}

Here we can see how some operations are set (fp_isZero, fp_clear, etc.) and how others are
set in setOp2 based on some extra conditions. Below (Listing 3.18) we can see the code of the
set0p2 function:

Listing 3.18: set0p2 function (src/fp.cpp#L246-1285).

template<size_t N, class Tag, bool enableFpDbl, bool gmpIsFasterThanLLVM>
void set0p2(0p& op)
{
op.fp_shrl = Shri<N, Tag>::f;
op.fp_neg = Neg<N, Tag>::f;
if (op.isFullBit) {
op.fp_add = Add<N, true, Tag>::f;
op.fp_sub = Sub<N, true, Tag>::f;
} else {
op.fp_add = Add<N, false, Tag>::f;
op.fp_sub = Sub<N, false, Tag>::f;

if (op.isMont) {
if (op.isFullBit) {
op.fp_mul = Mont<N, true, Tag>::f;
op.fp_sqr = SqrMont<N, true, Tag>::f;

} else {
op.fp_mul = Mont<N, false, Tag>::f;
op.fp_sqr = SqrMont<N, false, Tag>::f;
}
op.fpDbl_mod = MontRed<N, Tag>::f;
} else {

op.fp_mul = Mul<N, Tag>::f;
op.fp_sqr = Sqr<N, Tag>::f;
op.fpDbl_mod = Dbl_Mod<N, Tag>::f;

op.fp_mulUnit = MulUnit<N, Tag>::f;

if (!gmpIsFasterThanLLVM) {
op.fpDbl_mulPre = MulPre<N, Tag>::f;
op.fpDbl_sqrPre = SqrPre<N, Tag>::f;

op.fp_mulUnitPre = MulUnitPre<N, Tag>::f;
op.fpN1_mod = N1_Mod<N, Tag>::f;
op.fpDbl_add = DblAdd<N, Tag>::f;
op.fpDbl_sub = DblSub<N, Tag>::f;

o f

o f

op.fp_addPre = AddPre<N, Tag>
op.fp_subPre = SubPre<N, Tag>
op.fp2_mulNF = Fp2MulNF<N, Tag>::f;

(continues on next page)

Ref.: 20-07-732-REP Quarkslab SAS 17

284
285

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

349
350
351
352
353
354
355

Public

(continued from previous page)

SetFpDbl<N, enableFpDbl>::exec(op);

As we can see, the initialization of Op depends on many conditions that make it difficult to
follow (compile-time flags, in the case of Listing 3.17; and run-time flags, in the case of Listing
3.18).

More initialization is done in Op: :init after calling the aforementioned functions. Listing 3.19
exemplifies this:

Listing 3.19: Extract from Op::init function (src/fp.
cpp#L509-L525).

#4ifdef MCL_USE_LLVM
if (primeMode == PM_NIST_P192) {
fp_mul = &mcl_fp_mulNIST_P192L;
fp_sqr = &mcl_fp_sqr_NIST_P192L;
fpDbl_mod = &mcl_£fpDbl_mod_NIST_P192L;
}
if (primeMode == PM_NIST_P521) {
fpDbl_mod = &mcl_fpDbl_mod_NIST_P521L;
}
#endif
#4f defined (MCL_USE_VINT) & MCL_SIZEOF UNIT == 8
if (primeMode == PM_SECP256K1) {
fp_mul = &mcl::vint::mcl_fp_mul_SECP256K1;
fp_sqr = &mcl::vint::mcl_fp_sqr_SECP256K1;
fpDbl_mod = &mcl::vint::mcl_fpDbl_mod_SECP256K1;
}
#endzf

These code blocks depend on compile-time flags which make them conditional. As it can be seen,
there are some operations that are initialized at different places, under very special conditions
(Listing 3.17 and Listing 3.18). For example, fp_mul is initialized in Listing 3.18 at lines 260, 263
and 268 (depending on some conditions). Later, set again in Listing 3.19 at lines 511 and 5214,
depending on other conditions. Most probably these conditions have to do with optimizations.
Considering all these possibilities, it is difficult to determine when the implementation of one
operation will be used over the others.

Lastly, the initForMont function is called at the very end of the init function. We can see it
in Listing 3.20:

Listing 3.20: initForMont function (src/fp.
cpp#L349-L377).

static bool initForMont(Op& op, const Unit *p, Mode mode)

{
const size_t N = op.N;
bool b;
{

mpz_class t = 1, R;
gmp: :getArray (&b, op.one, N, t);

(continues on next page)

4 And, in case the XBYAK back end is selected, it is set again (after the call of set0p2) by the FpGenerator
(src/fp_generator.hpp#L331).

Ref.: 20-07-732-REP Quarkslab SAS 18

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Public

(continued from previous page)

if (!b) return false;

R = (t << (N * UnitBitSize)) % op.mp;
t = (R * R) % op.mp;

gmp: :getArray (&b, op.R2, N, t);

if (!b) return false;

t = (t * R) % op.mp;

gmp: :getArray (&b, op.R3, N, t);

if (!'b) return false;

}
op.rp = getMontgomeryCoeff (p[0]);
if (mode !'= FP_XBYAK) return true;
#ifdef MCL_USE_XBYAK
if (op.fg == 0) op.fg = Op::createFpGenerator();
bool useXbyak = op.fg->init(op);

if (useXbyak && op.isMont && N <= 4) {
op.fp_inv0p = &invOpForMontC;
initInvTbl (op) ;
I
#endif
return true;

}

In case the XBYAK back end is used, the implementation of some operations are JITed (as
explained in The XBYAK back end) and some pointers of Op are set (in this case, overridden
as some of them were set prior to this function call).

Another aspect to consider in the initialization of the Op structure is the Mode parameter. It
specifies which back end will be used. Some features are enabled or disabled based on it (and for
some cases the Montgomery representation is enabled). The possible modes are the followings:
FP_AUTO, FP_GMP, FP_GMP_MONT, FP_LLVM, FP_LLVM_MONT, and FP_XBYAK. The mode is generally
set to FP_AUTO throughout the code (set as the default value in each function that takes it as a
parameter; for example, in the FpT: :init method). When set to FP_AUTO everything seems to
work as expected as the mode is switched to the corresponding one (that is, FP_GMP, FP_LLVM
or FP_XBYAK) "automatically". This is achieved through the conditionally compiled code blocks
that depend on the MCL_USE_{GMP,LLVM,XBYAK} flags. The following excerpt (Listing 3.21)
shows how it is done for the XBYAK case:

Ref.: 20-07-732-REP Quarkslab SAS 19

406
407
408
409
410
411
412
413
414
415
416

245
246
247
248
249
250
251
252

254
255
256

Public

Listing 3.21: Excerpt from Op::init (src/fp.
cpp#L406-1416).

#4fdef MCL_USE_XBYAK
if (mode == FP_AUTO0) mode = FP_XBYAK;
if (mode == FP_XBYAK && bitSize > 384) {
mode = FP_AUTO;
}
if (!isEnableJIT()) {
mode = FP_AUTO;
}
#else
if (mode == FP_XBYAK) mode = FP_AUTO;
#endaf

Let us suppose the mode is set to FP_GMP (either because the default parameter was changed
or the mode was mistakenly set) and the compilation flag is set to MCL_USE_XBYAK. Under this
scenario the error would go unnoticed and the initialization of Op would be invalid. The same
happens for the LLVM mode.

Important: We recommend re-engineering this part of the code to avoid these kind of issues.

Initialization of the XBYAK back end

In this section, we will explain in more detail some of the internals of FpGenerator.

Listing 3.22 shows the initialization function of the generator:

Listing 3.22: FpGenerator::init method (src/
fp_generator.hpp#L245-1256).

bool init(0Op& op)

{
if (!cpu_.has(Xbyak::util::Cpu::tAVX)) return false;
reset(); // reset jit code for reuse
setProtectModeRW(); // read/write memory
init_inner (op);
// ToDo : recover op if false
if (Xbyak: :GetError()) return false;

// printf("code size=jd\n", (int)getSize());

setProtectModeRE(); // set read/ezec memory
return true;

}

The init_inner method (src/fp_generator#L260-L369) is responsible for initializing the
functions of Op. More precisely, all JITed code is emitted within this function. As we can see
in the code snippet, previous to its call, the method setProtectModeRVW is invoked, leaving the
memory region in a read/write state. Then, after emitting the code, the memory region is left
as read /execute (setProtectModeRE method) as necessary from a security standpoint.

We found that both setProtectModeRW and setProtectModeRE functions throw exceptions
by default whenever an error occurs. As a matter of fact, these functions receive a param-
eter to indicate this, which is true by default. Exceptions are thrown with the help of the
XBYAK_THROW_RET preprocessor macro, which depends on the XBYAK_NO_EXCEPTION flag (src/

Ref.: 20-07-732-REP Quarkslab SAS 20

999
1000

1001
1002
1003

Public

xbyak.h#L267-L310). In case this flag is not set (default state), the XBYAK_THROW_RET effec-
tively throws a C++ exception. In the opposite case, it sets a static variable with the error
code and returns it as well. In the latter case, any issue generated during the invocation of
setProtectModeRE would go unnoticed since the return value is not checked anywhere within
the init function (src/fp_generator.cpp#L251 and src/fp_generator.cpp#L256, respec-
tively). It is worth noting that there is an error check on line 254, after the init_inner
function is executed. Moreover, in case of error, there is no recovery action on behalf of the
calling function (as seen in the To Do item in the code). This could lead to an inconsistent
state of Op, since some of its operations might not have been initialized.

Important: = We recommend checking the return value of both setProtectModeRW and
setProtectModeRE to prevent silent errors in case of compiling the library with different com-
pilation flags. We also recommend checking the return value of the init calling function and
take the necessary actions in case of error.

There is one more thing to notice in the init method. The generator only works if the CPU
has AVX support. In case it doesn't, no exception or error message is presented to the user and
the generator simply falls back to the default implementation of the operations.

Important: We recommend to explicitly warn the user in this case.

The invocation of the FpGenerator depends on the MCL_USE_XBYAK flag. It is called from
within the initForMont function (Listing 3.20), which in turn is called from Op::init. The
exact relationship between initFromMont and the XBYAK back end is not clear since there
are modes that are explicitly based on the Montgomery representation (such as FP_GMP_MONT
and FP_LLVM_MONT).

Important: We strongly suggest re-engineering the commented functions, specially Op: :init.
This would help to better define the limits between the many back ends that currently seem to
be quite coupled.

The FpGenerator extends Xbyak::CodeGenerator. It is initialized with a fixed amount of
space for allocating the JITed code, specifically: 4096 * 9 bytes. This number seems to be
sufficient for the current requirements, although it is not clear how it was calculated.

The CodeGenerator is prepared to dynamically grow the memory region containing the code.
However, in this particular setup the memory limit is fixed, and as explained earlier in case it
is reached either an exception or an error is raised with the CodeGenerator class. We found
that the initialization of this class is complex, as we can see below:

Listing 3.23: CodeArray class constructor (src/xbyak.
h#1.999-L1012).

explicit CodeArray(size_t maxSize, void *userPtr = 0, Allocator *allocator = 0)

: type_(userPtr == AutoGrow 7 AUTO_GROW : (userPtr == 0 || userPtr ==
—DontSetProtectRWE) 7 ALLOC_BUF : USER_BUF)

, alloc_(allocator ? allocator : (Allocator*)&defaultAllocator_)

, maxSize_(maxSize)

, top_(type_ == USER_BUF 7 reinterpret_cast<uint8_t*>(userPtr) : alloc_->
—alloc((std: :max<size_t>) (maxSize, 1)))

(continues on next page)

Ref.: 20-07-732-REP Quarkslab SAS 21

1004
1005
1006
1007
1008

1009
1010
1011
1012

925
926
927

Public

(continued from previous page)

, size_(0)
, isCalledCalcJmpAddress_(false)
{
if (maxSize_ > 0 && top_ == 0) XBYAK_THROW(ERR_CANT_ALLQC)
if ((type_ == ALLOC_BUF && userPtr != DontSetProtectRWE && useProtect()) && !

—setProtectMode (PROTECT_RWE, false)) {
alloc_->free(top_);
XBYAK_THROW (ERR_CANT_PROTECT)

}

After following the parameters from the FpGenerator, we can determine that the type of al-
location used is ALLOC_BUF and that the allocator used is the defaultAllocator_. The latter
depends on the XBYAK_USE_MMAP_ALLOCATOR flag. The parameter usrPtr seems to have a dual
purpose, being used both to specify the type of memory allocation (where the possible values
are 0, AutoGrow and DontSetProtectRWE, shown in Listing 3.24) and as a user-defined memory
pointer to store the JITed code when none of the mentioned values are used. In the specific
case of FpGenerator, its value is set to Xbyak: :DontSetProtectRWE.

Listing 3.24: Possible values of usrPtr (src/xbyak.
h#1.925-1.927).

// 2nd parameter for constructor of CodeArray(maxzSize, userPtr, alloc)
void *const AutoGrow = (voidx)1; //-V566
void *const DontSetProtectRWE = (voidx*)2; //-V566

This kind of parameter management can introduce bugs. However, this escapes the scope of
the current library since it is contained within Xbyak.

3.3.3 Back ends: Conclusion

One of the main drawbacks of the current design is that it makes difficult to assess with ease
which implementation of each operation is being used at any given compilation or parametriza-
tion of the library. Although most probably this approach was taken to allow easy prototyping,
testing and benchmarking of different implementations, it has turned into a disadvantage from
the security and correctness perspective. Due to the complex nature of the code, subtle bugs
could be hard to spot, weakening the overall reliability of the library.

The way of initializing the Op structure, that is making each available operation to point to its
corresponding implementation, is complex and non-uniform throughout the back ends. More-
over, it is spread across several functions. This problem is worsened by the multiple compile-time
flags that enable conditional compilation of multiple pieces of code.

Besides the lack of uniformity of the back ends interface, there is an interaction between them
that makes even harder to follow the control flow. For example, the back ends are designed in
such a way that it would seem they don't need to be fully implemented to work, since if one
back end does not implement one operation the default one is used. As stated above, probably
this allowed for testing and measuring the performance of different implementations at an early
development stage, however, it may become a source of potential issues.

As this library lays the foundation of the whole bls library it is very important to be able to
easily identify which implementation is being used.

Ref.: 20-07-732-REP Quarkslab SAS 22

Public

Another important aspect to consider is the parametrization of the library'®. There are many
preprocessor defines that modify functions and/or conditionally compile blocks of code. Some
of them are defined when building the library and the others take a default value. The purpose
of many of them is not entirely clear (nor documented). The libraries Xbyak and Cybozulib also
count with their own defines (in the latter case there is no documentation at all).

Our recommendations will focus mainly on improving the overall design and general program-
ming practices:

o Addition of a clear and precise interface for back ends. Ideally, a back end should have
an initialization and finalization routine, as well as a well-defined list of operations to
implement.

o The selection of each back end should be mutually exclusive (in the build system as well
as in the code). In the case a fallback/default mechanism is supported make it explicit.

o Better definition of all parameters of the library, their possible values and the default ones.

3.3.4 Serialization/Deserialization

The serialization/deserialization is implemented using the Serializable struct, which holds
the general logic of the process. It requires that any class that derives from it implements a
load and a save method. These methods are responsible for handling the specific aspects of
the serialization/deserialization related to the class implementing them.

There are multiple serialization modes available, represented by the IoMode enumeration
(include/mcl/mcl.op.hpp#L89-L106). We focused on IoSerialize, which is the only one
relevant for the purposes of this audit. We considered the case when the isETHserialization
is true as well, for the same reason.

G1 and G2 are implemented using EcT, FpT and Fp2T. Therefore, we reviewed only the load
and save of those classes.

As we commented in Section 3.2.2, the serialization/deserialization is generally a problematic
process from a security standpoint since it involves parsing untrusted data and dynamic memory
manipulation. Fortunately, in this case the potential issues posed by those factors are reduced
since the process is fairly simple and there is no direct dynamic memory manipulation involved.

Serialization

Let us start by reviewing the save method from EcT class, which follows the format described
in the documents mentioned in section Serialization/Deserialization. This function calls the
save method of the underlying element (either FpT or Fp2T) and sets the three most significant
bits accordingly after serializing the corresponding element. As far as we can tell, the function
only deviates from the described format in the isMSBserialize function (include/mcl/ec.
hpp#L998). Depending on the return value of this function, the serialization adds an extra byte
when storing the element. It is worth mentioning that under the current configuration of the
library, this does not seem to occur. However, it should be reviewed to make sure it does not
occur under any configuration.

The save method of Fp2T is quite straightforward as it only has to store two elements of type
FpT, one after the other. To this end, it relies on the save method of the latter. It is worth men-
tioning that this function also depends on the IoSerialize mode and the isETHserialization
flag in order to work properly.

15 We will comment more on this on the Compilation flags and the Preprocessor defines sections.

Ref.: 20-07-732-REP Quarkslab SAS 23

Public

The save method of FpT follows the specification, storing the element in big-endian form cor-
rectly.

Deserialization

In the case of EcT, the deserialization does not follow the analogous process of the serialization,
explained in the previous section, since the elements FpT and Fp2T are processed in the load
method of EcT (instead of calling the 1oad method of FpT and Fp2T). The reason of this approach
is not clear.

The EcT: :1load method relies on the setArray one, implemented by both FpT and Fp2T. The
latter, from a high-level perspective, loads an element from a buffer similarly to what the load
method would do. However, the implementation differs as setArray does some extra processing
(calls to the copyAndMask and toMont functions). The function seems to follow correctly the
specification and, subsequently, loads the underlying elements as expected.

Conclusions

As a final remark, we recommend unifying the different approaches of the serialization process.
On one hand, the save and load methods of EcT. On the other, the compressed and uncom-
pressed variations. This design may generate subtle discrepancies for some unforeseen corner
cases.

Regarding the compressed and uncompressed variations, it is worth noting that despite vast
differences in the implementation, both produced the same results when put to test.

3.3.5 General observations

The following remarks concern about general aspects.

Cybozulib and Xbyak libraries integration

The mecl library relies on two other libraries: Cybozulib and Xbyak. Both of them have its
own repository: cybozulib and xbyak, respectively. However, these libraries are not included as
external dependencies but have been copied inside the code base.

Important: We highly recommend keeping them in their original repositories and include
them as external libraries.

Cybozulib seems to be a multi-purpose library, used extensively in mcl. It is worth mention-
ing there is no documentation available regarding this library. Some parameters (such as
CYBOZU_DONT_USE_STRING and CYBOZU_DONT_USE_EXCEPTION) that alter the behavior of certain
functions should be better documented.

Xbyak is a C++ header-only library that provides functionality to emit x86(IA32), x64(AMD64,
x86-64) assembly code dynamically, and is the core of the XBYAK back end. This library is
very complex in nature as well as extensive. In this case, there is documentation available that
describes the basic usage of the library and the parameters that alter some of the functioning
of the code.

Although the library has more than 10 years of development, it should be noted that it deals
with a very difficult topic such as dynamic code generation. Any error or bug in this library

Ref.: 20-07-732-REP Quarkslab SAS 24

https://github.com/herumi/cybozulib
https://github.com/herumi/xbyak

Public

can impact significantly on the corresponding back end.

Build system

There are two build system scripts (for Unix-like systems): one based on make (Makefile) and
the other on cmake (CMakeLists.txt). The readme.md file presents both. However, given
the many compilation flags available, it is not clear that both compile the library in the exact
same way. There are other differences regarding the compilation of the LLVM back end as well
(described in section Section 3.3.2).

On the other hand, we found that other projects using the bls library such as bls-eth-go-binary
do not use any of the build system provided but instead compile the library on their own.

Important: We recommend unifying the build system for clarity and consistency. The use of
the compiled version should be enforced in projects depending on this library as well.

Compilation flags

There are multiple compilation flags. The most important ones are: MCL_USE_GMP,
MCL_USE_LLVM and MCL_USE_XBYAK. Each one represents a different back end. In principle,

these seem to be used in a mutually exclusive way. However, taking a look at CMakeLists.txt

we can see that the default values are'®:

e MCL_USE_GMP=0N
e MCL_USE_LLVM=0FF
e MCL_USE_XBYAK=0N

Note: The remarks made here and in the rest of the chapter about the compilation flags were
based on the CMakeLists.txt file.

Handling compilation flags in this mode can lead to incorrect builds of the library by setting
flags that should be mutually exclusive.

Another flag that may cause confusion is MCL_USE_ASM. This flag is used to generate the assembly
code for the LLVM back end. However, in the CMakeLists.txt file, it is ON by default, but
the MCL_USE_LLVM is OFF. This leads to think that it is needed for the GMP and XBYAK back
ends when, in principle, it is not.

Important: We recommend improving these aspects to avoid the mentioned issues.

16 This was covered in more detail in the Back ends: Internals section.

Ref.: 20-07-732-REP Quarkslab SAS 25

https://github.com/herumi/bls-eth-go-binary

Public

Preprocessor defines

There are many preprocessor defines spread throughout the code base. Many of them are used
for conditionally compile multiple pieces of code. These make following and understanding
the normal execution flow of the entire library quite challenging. In many cases, the reasons
for using these defines are not clear, as well as the conditions that enables or disables them.
We came across several #if 1 blocks, presumably, put there to test the performance of some
portions of code.

As commented in previous sections, this programming practices can introduce bugs under cer-
tain configurations of the library that can be hard to spot. We recommend reviewing these and
refactoring them to increase the reliability and readability of the code.

Testing

One concerning aspect is how (or whether) the library is tested under all possible configurations.
The complex nature of the implemented operations and the multiple ways to do it demand
special emphasis on testing and the infrastructure around it. Some tests require the user to
manually select the back end mode (refer to section Section 3.3.2 for a detailed description),
thus preventing the possibility of automating the process.

Automatically testing the library for all available back ends is highly recommended'”.

Note that, even if all the tests are non-deterministic because they use the output of a PRNG
seeded by non-constant values, the tests we reviewed output the results of the PRNG, which
allows, in case of a failure, to reproduce the code knowing only the value that has raised the
erTor.

17 Similar comments apply to the bis library.

Ref.: 20-07-732-REP Quarkslab SAS 26

Public

4. Adeherence with the specifications

In this section, we will concentrate our efforts on the implementation of some core operations
of the different RFCs, as described in [BLSsigRFC] and [HashToCurve].

4.1 The blis library

The bls library intends to provide an API to perform the cryptographic primitives of BLSsig
needed to sign a message, verify the signature and the aggregated versions of these primitives.

4.1.1 Bird's eye view on pairings for Ethereum 2.0

Let (G1,4+), (Go,+) and (Gr,-) be three different groups of prime order r. Let G, G2 and
gt be respectively a generator of each of the three groups. A pairing on Gi, Go and Gr is a
bilinear map e : G; X Go — G7. The different groups are instantiated thanks to the BLS12_ 381
specification [Pairing].

We will briefly summarize how to sign a message m. Let s be an element in Z/rZ, which will
be the secret key; the associated public key is computed as pr = spG1. Let H be a function
mapping a bit string to an element of Go. The signature of a message m is computed as
s = spH(m). To verify a signature, it is needed to verify if e(G1, s) is equal to e(pg, H(m)).
Note that we can define also public key in G and map the message in G;. The choice in
Ethereum 2.0 is the one we described, where a public key belongs to G; and the hash of a
message belongs to Gg, also called minimal-pubkey-size according to [BLSsigRFC].

To aggregate signatures, let s; o and s 1 be two secret keys, pi o and py 1 respectively the two
associated public keys and m a message to be signed. Let so = s oH(m) and s; = s 1 H(m)
be two signatures of m by respectively the two secret keys. Let s be the aggregated signature
of sp and s1, that is s = sgs1. To check if s is composed of both sy and s1, it suffices to check
that e(Gh, s) is equal to e(pgo + pr,1, H(m)).

This way to aggregate signatures is however subject to a rogue-key attack, which is an attack
that builds a specific public key in order to annihilate the contribution of other legitimate public
keys. In our previous example, if py; = —ppo + ©G1, where z is a scalar in Z/rZ, then the
previous computation will be led to the equality of both parts, even if the contribution of py, o
will be hidden by p; 1. However, it is mostly impossible with such a public key to find the
associated secret key. A way to mitigate the rogue-key attack is to provide a proof that the
expected possessor of the secret key associated to a public key has indeed this knowledge. This
is the proof of possession scheme described in §3.3 of [BLSsigRFC].

In Ethereum 2.0, the ciphersuite is BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_, de-
scribed in [BLSsigRFC]. This means that:

e the pairing friendly curve is BLS12_ 381;
e the signature scheme variant is the minimal-pubkey-size one;

e the hash_to_point, or hash_to_curve, implementation will follow §8.8.2 of
[HashToCurve];

e the signature scheme will use the proof of possession scheme to avoid the rogue-key attack.

Note however that the rogue-key mechanism in Ethereum 2.0 [Eth2.0Ph0] is different than the
one of [BLSsigRFC].

Ref.: 20-07-732-REP Quarkslab SAS 27

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md#bls-signatures

Public

4.1.2 Usage of the library for the Ethereum 2.0 purpose

First, the bls library must be compiled using the BLS_ETH=1 compilation definition, since basi-
cally, not defining BLS_ETH will allow to use the library in the minimal signature size instead
of the minimal pubkey size needed by Ethereum 2.0. We follow the documentation in the
README .md, which states that

#define BLS_ETH
#include <mcl/bn384_256.h>
#include <bls/bls.h>

Note: The file mc1/bn384_256.h does not exist in the mcl project, it is likely the file mc1/
bn_c384_256.h.

To use the bls library, the documentation states that the following preamble is needed

int err = blsInit(MCL_BLS12_381, MCLBN_COMPILED_TIME_VAR);
if (err '=0) { ... }

blsSetETHmode (BLS_ETH_MODE_LATEST) ;

Note: In the bls-eth-go-binary project, the Init function which gathers all these initializa-
tion functions takes as input a curve identifier, but only the one of MCL_BLS12_381 may be used.
In the bls-eth-rust however, the init_library function does not take an input and forces
to use the identifier of BLS12_ 381, which is the only one necessary for this specific library.

The blsSetETHmode function does not return an error if the curve identifier is the
one of BLS12 381 and if the mode is BLS_ETH_MODE_DRAFT_O07, which corresponds to
BLS_ETH_MODE_LATEST. Unlike some identifiers, e.g., the curve identifier in mcl/include/mcl/
curve_type.h, the BLS_ETH_MODE are defined thanks to #define and not enum type.

Note: The status of the function blsSetETHmode seems not really clear for us. This function
suggests that it would affect something for an Ethereum 2.0 behaviour, but the function modifies
a variable g_irtfHashAndMap, which is used in the function toG, a function in which this variable
is used only if BLS_ETH is not defined. According to the bls README.md', this function has little
to no impact, since the toG function is used in a function that seems not advised to work with
in the context of Ethereum 2.0. This issue was reported as Issue 67

The blsInit function can be summarized to this portion of code, when the variable curve is
equal to MCL_BLS12_381, BLS_ETH is defined and __wasm__ is disabled.

int blsInit(int curve = MCL_BLS12_381, int compiledTimeVar)
{
const mcl::CurveParam* cp = mcl::getCurveParam(curve);
if (cp == 0) return -1;
bool b;
initPairing (&b, *cp);

(continues on next page)

! https://github.com/herumi/bls/tree/e4663751b56f3e55f035bb4b1444d5273c5ae36e#
functions-corresponding-to-eth20-spec-names

Ref.: 20-07-732-REP Quarkslab SAS 28

https://github.com/herumi/bls#initialization
https://github.com/herumi/bls/issues/67
https://github.com/herumi/bls/tree/e4663751b56f3e55f035bb4b1444d5273c5ae36e#functions-corresponding-to-eth20-spec-names
https://github.com/herumi/bls/tree/e4663751b56f3e55f035bb4b1444d5273c5ae36e#functions-corresponding-to-eth20-spec-names

Public

(continued from previous page)

if (!b) return -1;
g_curveType = curve;

mclBn_setETHserialization(1);

g_P.setStr(&b, "...", 10);

mclBn_setMapToMode (MCL_MAP_TO_MODE_HASH_TO_CURVE_07) ;
if (!b) return -101;

return O;

}

The function getCurveParam returns, if the identifier of the curve matches the allowed ones
(e.g., the MCL_BLS12_381 one), some parameters of the curve, which are, using the notation of
[Pairing]:
e a string representing the value, written in hexadecimal, of the parameter ¢, where ¢ is
equal to —263 — 262 _ 960 _ 957 _ 948 _ 916 for B1,S12 381;

o the coefficient b of the equation of the curve y?> = z2 + b, where b is equal to 4 for
BLS12_381;

e an information xi_a about the b’ coefficient, for which ' = b(xi_a + u) if the curve is of
M-type, b’ = xi_a — u, where xi_a is equal to 1;

e a boolean which indicates if the curve is of M-type or not, i.e., D-type, which is true for
BLS12_ 381;

« the identifier of the curve for the mcl project.

The initPairing pairing function computes from the curve parameters listed above the needed
elements, e.g., r and p, which initialize, among others, the Fr and Fp objects. Some of the
underlying functions return a boolean to report problem, which is correctly checked all along
the chain.

The next functions finish the initialization. One sets the internal variable isETHserialization_
of the FpT class to true, the other sets the generator g_P of the group G to the value in base
10 of §4.2.1 of [Pairing] and the last function indicates that the hash_to_curve function must
be used with a mode close to implement the RFC [HashToCurve], see Section 4.2.1.

Note: ThemclBn_setETHserialization takes an integer as a parameter, which for now must
be to equal to 1 to set the variable as true, and any other values to be false. It may be better
to change this integer to a boolean, if the value-range remains only true or false.

4.1.3 General usage of the bls project

In this section, we will follow the sections of [BLSsigRFC], and link to the appropriate functions
in the bls project.

Note: For now on, the section about the test vectors in [BLSsigRFC]| is empty, the tests
implemented in the bls library are therefore in a best-effort mode, but corner cases may remain.

To build the tests in the Ethereum 2.0 context, a modification may need to be done to enable
them. We propose here a way. After installing the mcl project as a submodule git submodule
update --init --recursive, modify the build.sh file at the root of the bls project by adding

Ref.: 20-07-732-REP Quarkslab SAS 29

Public

-DBLS_ETH=1 in the ..._build() functions in order to enable the BLS ETH=1 mode, then
run the build. sh script. The resulting binaries to run the tests are in the build/bin directory.

KeyGen

First, the RFC begins by describing a way to generate a secret key. The RFC states however
that any function that produces a "statistically close to uniformly random in the range" [1,7).

Note: The underlying functions in the RFC are all implemented in the mcl project, since
some HMAC-SHA2 functions may be used through the cybozu project and the I20SP and
0S2IP functions are already defined to perform the hash_to_curve [HashToCurve].

The procedure in the bls project is less documented. Two functions may be used to generate a
private key

/*
set secretKey if system has /dev/urandom or CryptGenRandom
return 0 ©1f success else -1

*/

BLS_DLL_API int blsSecretKeySetByCSPRNG(blsSecretKey #*sec);

/*

set user-defined random function for setByCSPRNG

@param self [in] user-defined pointer

@param readFunc [in] user-defined function,

which writes random bufSize bytes to buf and returns bufSize if success else,
—returns 0

Onote if self == 0 and readFunc == 0 then set default random function

Onote not threadsafe
*/
BLS_DLL_API void blsSetRandFunc(void *self, unsigned int (*readFunc) (void #*self, void,
—*buf, unsigned int bufSize));

By default, the blsSecretKeySetByCSPRNG requests either /dev/urandom or CryptGenRandom.

Note: The CryptGenRandom is considered as deprecated and "Microsoft may remove this API
in future releases." We recommend to switch to BCryptGenRandom as soon as possible.

Note also that the behaviour of /dev/random and /dev/urandom is more and more closer?.

A post treatment of the random string is done using the setArrayMask function, which uses
the copyAndMask function. A simplification of the algorithm seems to be close to the following,
where by is the bit size of a number N, which is the upper bound on the generated number.

1. Let & be a random number.
2. Let z < x mod 2%,

3. If £ > N, let « < = mod 201,

Note: Such an algorithm does not provide a distribution "statistically close to uniformly
random" in [1, V). We highly recommend to document the design choice, especially if it intends

2 https:/ /lore.kernel.org/lkml/20200131204924. G A455123@mit.cdu/

Ref.: 20-07-732-REP Quarkslab SAS 30

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptgenrandom
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptgenrandom
https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://lore.kernel.org/lkml/20200131204924.GA455123@mit.edu/

Public

to provide secret key that may be used in the wild. This function can be used for testing
purpose, but should be marked as it if this is the only goal of the function. Note also that
[EIP-2333] and [BLSsigRFC] described the same way to generate a secret key from an input
key material. An explanation about the design choices may be found in §5.1 of [HashToCurve].

The second function allows to set a custom PRNG. This custom PRNG must return the size of
the output on success, since it is the condition for the read function not to report an error.

Note: Using another PRNG will not change the bias resulting from the copyAndMask function.
Note that the return code of, e.g., RAND_bytes of OpenSSL or mbedtls_ctr_drbg_random of
mbedTLS must be wrapped to match the requirements of the function.

Management of the secret keys

Management of the secret keys is the sole responsibility of the user. There is no function to wipe
the memory from the secrets, and especially from the secret key. The users need to implement
such function by themselves.

SkToPk

The second function is the computation of a public key from a secret key. The corresponding
implementation in the bls project is blsGetPublicKey, however with some differences. The
most important one is that the function returns a blsPubliKey, which is no more than a point
in the subgroup of order r of G;. To be closer to the RFC at this point, the code will likely be

void blsGetPublicKey(void *buf, mclSize maxBufSize, const blsSecretKey *sec, bool,
—compressed) {
blsPublicKey pub; blsGetPublicKey(&pub, sec);
if (compressed)
blsPublicKeySerialize(buf, maxBufSize, &pub);
else
blsPublicKeySerializeUncompressed(buf, maxBufSize, &pub);

Note: For more information about the serialization / deserialization variants, please refer to
Section 3.2.2.

The second less important remark is that the underlying scalar of the blsSecretKey is not
checked to be in the correct range, i.e., [1,7).

Note also that the multiplication algorithm is the classical one, not a one that may be constant
time, see Section 4.2.2. This may lead to have a PopProve implementation which is not constant
time, since the API proposed by [BLSsigRFC] in §3.3.2 recomputes the public key from the
secret key. We however do not see a situation where the SkToPk computation must absolutely
be done in a constant-time way for the Ethereum 2.0 case. Indeed, the computation of the
public key may be done only once offline and stored to be provided when needed. However, if
such a computation is not possible, or a more complicated protocol where the public key needs
to be computed on the fly, the implementation must become constant-time.

Ref.: 20-07-732-REP Quarkslab SAS 31

Public

KeyValidate

This process allows to verify if a public key:
1. is a valid point on the curve,
2. is not the identity element,
3. is in the correct subgroup.

The input of the function is a serialized public key, and the deserialization algorithm verifies
the first requirement. The second operation needs to define previously the point at infinity and
then compare this point with the deserialized public key.

Note: We do not find a function in the mcl project which verifies if an element is the identity
element or not, but we may miss such a function.

The last operation is implemented in the blsPublicKeyIsValidOrder function.

CoreSign

There are two functions that may be used to sign: blsSign and blsSignHash. In the Ethereum
2.0 context, both functions have the same behaviour, since the toG function, which gives a
return code, returns always true if BLS_ETH is defined. The function uses the mulCT function,
which is supposed to provide a constant-time multiplication, see Section 4.2.2. As in the SkToPk
function, the signature is not serialized at the end of the function, to correspond to the RFC,
either the blsSignatureSerializeUncompressed or blsSignatureSerialize functions must
be used.

CoreVerify

As in the signature process, two functions may be used, blsVerify and blsVerifyHash, and
are equivalent when compiling with BLS_ETH=1. These two functions differ with the RFC since
both the public key and the signature are supposed to be deserialized and valid. This process
skips then the first part of the RFC:

R = signature_to_point (signature)

If R is INVALID, return INVALID

If signature_subgroup_check(R) is INVALID, return INVALID
If KeyValidate(PK) is INVALID, return INVALID

xP = pubkey_to_point (PK)

O WN -

Then, an implementation that takes signature and public key from the wild, as it may be the
case for an Ethereum 2.0 client, must implement these instructions before using blsVerify or
blsVerifyHash. This corresponds basically to

o for 1., use blsSignatureDeserialize or blsSignatureDeserializeUncompressed.
o for 3., use blsignatureIsValidOrder.

o for 4., use KeyValidate, as described in Section 4.1.3.

Note: There will be various ways to avoid recomputation in this function, as caching the
results of KeyValidate, see §2.5 of [BLSsigRFC], or swapping 5. and 4. in order to not

Ref.: 20-07-732-REP Quarkslab SAS 32

Public

deserialize two times the public key, and then modifying a bit the input of KeyValidate to
accept a deserialized public key.

Aggregate

The Aggregate function proposes a method to aggregate n blsSignature into one. As in
the previous implementations of the bls project, the signatures are considered to be previ-
ously deserialized and valid. Note that the condition that n is non-zero is checked in the
blsAggregateSignature function, but there is no return code associated to that, even if the
precondition in the RFC allows to get the INVALID return code. The resulting signature is
neither serialized at the end of the aggregation process.

CoreAggregateVerify

In the bls project, there are three different functions to check an aggregated signature:

o int blsFastAggregateVerify(const blsSignature *sig, const blsPublicKey
*pubVec, mclSize n, const void *msg, mclSize msgSize)

o int blsAggregateVerifyNoCheck(const blsSignature *sig, const blsPublicKey
xpubVec, const void *msgVec, mclSize msgSize, mclSize n);

e int blsVerifyAggregatedHashes(const blsSignature *aggSig, const
blsPublicKey *pubVec, const void *hVec, size_t sizeofHash, mclSize n).

Only DblsAggregateVerifyNoCheck and blsVerifyAggregatedHashes match the API of
CoreAggregateVerify. Compared to the RFC, the public keys and the signature are supposed
to be deserialized and checked to be valid, as it is the case in all the API of the bls project.
Then, the return code of this implementation, which is actually a boolean, will concern:

e the precondition call, which is that if n is zero, the result is INVALID, i.e., 0 in our case;

e the condition 11 in the RFC, which is VALID, i.e., 1 in our case, or INVALID, i.e., 0 in our
case, about the verification of the signature.

The msgVec (resp. hVec) variable is supposed to contain all the n messages of the same size
msgSize (resp. sizeofHash) and concatenated each other.

Inside the BLS_ETH definition of blsAggregateVerifyNoCheck, there are two possible pieces of
code, activated by a #if 1. The activated part of code is commented as 1.1 times faster
than the other one. Let us however take a look at the non-activated case for now, which is the
closest possible to the RFC.

First, recall that a pairing computation can be decomposed into two main operations, see Chap
3 of [GuiPai]:

o the Miller loop (ML);

o the final exponentiation (FE).

However, if the computation involves a lot of pairing operations, it is possible to "aggregate"
the intermediate results of the ML computations without performing the FE operation, and
perform only the FE when the pairing needs to be fully computed. This is why, in the code,
the call to millerLoop is used, and not the one to pairing, and before the check condition, a
call to finalExp.

Ref.: 20-07-732-REP Quarkslab SAS 33

Public

Compared to the RFC, the check condition is C;/Cy = C} - C2_1 = C1-pairing(R, —P).

Having in mind this implementation, we can detail now the activated part of the implemen-
tation, which is according to the comment faster than this previous implementation. This
function works by computing the ML into chunks of 16 ML batch computations thanks to the
millerLoopVec implementation.

The DblsVerifyAggregatedHashes function has the same behaviour as the
blsAggregateVerifyNoCheck one and the same optimization process to speed up the
computation (there is however no way to select a less optimized implementation).

Note: As it, a call to this function does not prevent against a rogue-key attack. This is
however not the purpose of the function.

Since the bls project is designed for a proof of possession scheme, then we switch to the §3.3 of
[BLSsigRFC]. The case of blsFastAggregateVerify will be discussed in Section 4.1.3, since
it may be used securely specifically in this context.

Note: Since all the core operations of the RFC are implemented or close to respect the RFC,
implementing the basic scheme or the message augmentation scheme can be done in a relative
small amount of time.

PopProve and PopVerify

The implementation of blsGetPop uses previous functions of the API of the project, especially
in this case the b1sSign function and the serialization one. Let us remember the PopProve and
CoreSign procedures.

PopProve (SK) procedure
1. PK = SkToPk(SK)
Q = hash_pubkey_to_point (PK)

| CoreSign(SK, message) procedure
|
|
R =8K * Q |
|
|

1. Q = hash_to_point (message)

2. R=S8K * Q

3. signature = point_to_signature(R)
4. return signature

proof = point_to_signature(R)
return proof

g b w N

In the blsGetPop implementation, the PopProve procedure can be summarized as

blsPopProve(SK) procedure
1. PK = SkToPk(SK)
2. CoreSign(SK, PK)

However, if the hash_pubkey_to_point and hash_to_point are implementations of the
hash_to_curve procedure, their difference comes from the DST (Domain Specific Tag): the
DST for the hash_pubkey_to_point is BLS_POP_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_ and
the one for hash_to_point is BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_, the differ-
ence is in the BLS_POP... versus BLS_SIG.... The same thing needs to be applied to the
blsVerifyPop function, which uses the blsVerify implementation and then the wrong DST.

Note: We report this issue in Issue 66.

Ref.: 20-07-732-REP Quarkslab SAS 34

https://github.com/herumi/bls/issues/66

460
461
462
463
464

2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066

Public

FastAggregateVerify

This last procedure has the same purpose as the CoreVerify function, but instead of aggregating
different signatures for different messages, this function assumes that all the signatures were
done for a same message. When the aggregation of the public key is finished, this aggregated
public key is used in the blsVerify, which is in line with the RFC.

4.2 The mcl library

The mel library provides the low level functions used in the bls project. We reviewed mostly
the implementation of hash_to_curve as specified in [HashToCurve] and the multiplication of
a point on an elliptic curve by a scalar.

4.2.1 The hash_to_curve function

An implementation of the hash_to_curve algorithm, described in [HashToCurve] is pro-
vided through the mc1BnG1l_hashAndMapTo and mclBnG2_hashAndMapTo functions defined in
include/bn.h according to the documentation of the API. These functions are mostly wrap-
pers around respectively the hashAndMapToG1 and hashAndMapToG2 functions®. Let us describe
the mechanism of these functions, by taking a look at the mc1BnG2_hashAndMapTo function, the
mclBnG1l_hashAndMapTo function differs a few in the organization of the underlying functions
but not about the global mechanism.

Listing 4.1: mc1BnG2_hashAndMapTo method (include/mcl/
impl/bn_c_impl.hpp#L460-464).

int mclBnG2_hashAndMapTo(mclBnG2 *x, const void *buf, mclSize bufSize)

{
hashAndMapToG2 (*cast(x), buf, bufSize);
return O;

}

This function is however not as generic as described in [HashToCurve], then some parameters
or functionality are enforced during the computation of the mapping, we will then described
some of them, linking to the relevant part in the RFC or external documentations if needed.

Listing 4.2: hashAndMapToG2 method (include/mcl/bn.
hpp#L2056-2071).

inline void hashAndMapToG2(G2% P, const void *buf, size_t bufSize)
{
int mode = getMapToMode() ;
if (mode == MCL_MAP_TO_MODE _WB19 || mode >= MCL_MAP_TO_MODE_HASH_TO_CURVE_06) {
BN: :param.mapTo.mapTo_WB19_.msgToG2(P, buf, bufSize);
return;
}
Fp2 t;
t.a.setHashOf (buf, bufSize);
t.b.clear();
bool b;

(continues on next page)

3 Note however that in the bls project, there is no call to both of the functions of the API and directly a call
to the underlying functions.

Ref.: 20-07-732-REP Quarkslab SAS 35

https://github.com/herumi/mcl/blob/master/api.md

2067
2068
2069
2070
2071

39
40
41
42
43
44
45
46
47
48
49

50

51

52

53

Public

(continued from previous page)

mapToG2(&b, P, t);

// It will not happen that the hashed value is equal to spectial value
assert(b);

(void)b;

Note: In many parts of the code, the pattern assert(X); (void)X; is used, probably by
habit of the programmer. It may be good to pack this two instructions into one macro.

The first line of the function gets the mode which must be used by the function. The mode
seems to represent which version of the standard [HashToCurve] is targeted, plus some extra
mode, probably coming from old Ethereum 2.0 specifications before an alignment on the RFC.
The modes are selected thanks to mc1Bn_setMapToMode, which in the end stores the mode into
the variable mapToMode_ of a MapTo object. The different modes are the following

Listing 4.3: Different MCL_MAP_TO_MODE (include/mcl/
curve_type.h#L39-53).

/%
remark : if irtf-cfrg-hash-to-curve is completely fized, then
MCL_MAP_TO_MODE_WB19, MCL_MAP_TO_MODE_HASH TO_CURVE_0? will be removed and
only MCL_MAP_TO_MODE_HASH_TO_CURVE will be avatlable.
*/
enum {
MCL_MAP_TO_MODE_ORIGINAL, // see MapTo::calcBlN
MCL_MAP_TO_MODE_TRY_AND_INC, // try-and-incremental-z
MCL_MAP_TO_MODE_ETH2, // (deprecated) old eth2.0 spec
MCL_MAP_TO_MODE_WB19, // (deprecated) used in new eth2.0 spec
MCL_MAP_TO_MODE_HASH_TO_CURVE_O5 = MCL_MAP_TO_MODE_WB19, // (deprecated) draft-
—irtf-cfrg-hash-to-curve-05
MCL_MAP_TO_MODE_HASH_TO_CURVE_06, // (deprecated) draft-irtf-cfrg-hash-to-curve-06
MCL_MAP_TO_MODE_HASH_TO_CURVE_07, // draft-irtf-cfrg-hash-to-curve-07
MCL_MAP_TO_MODE_HASH_TO_CURVE = MCL_MAP_TO_MODE_HASH_TO_CURVE_O07 // the latset,
—version

};

Among all these modes, only MCL_MAP_TO_MODE_TRY_AND_INC, MCL_MAP_TO_MODE_ORIGINAL
and MCL_MAP_TO_MODE_HASH_TO_CURVE_O7 (and then, at this state of the code,
MCL_MAP_TO_MODE_HASH_TO_CURVE) will make the mc1Bn_setMapToMode function setting the
mode to the chosen one, and then return 0 instead of -1, to indicate an error.

Note: The return code of the function is not checked in the file src/bls_c_impl.hpp of the
bls project, which may cause an error in futur changes.

In the file £fi/cs/mcl/mcl.cs of the mcl project, the input value of mclBn_setMapToMode
is fixed to int MCL_MAP_TO_MODE_HASH_TO_CURVE = 5, which corresponds to
MCL_MAP_TO_MODE_HASH_TO_CURVE_O07. The return value is not checked, which may cause error
if the function is modified. In ffi/go/mcl/mcl.go, the error is checked.

Since the variable mapToMode_ in the bls project is set to MCL_MAP_TO_MODE_HASH_TO_CURVE_07,
we will follow this path in the code, we then jump to the msgToG2 function .

Ref.: 20-07-732-REP Quarkslab SAS 36

532
533
534
535
536
537

Public

Listing 4.4: msgToG2 method (include/mcl/mapto_wb19.
hpp#L532-537).

void msgToG2(G2% out, const void *msg, size_t msgSize) const

{
const char *dst = "BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_";
const size_t dstSize = strlen(dst);
msgToG2(out, msg, msgSize, dst, dstSize);

}

In this call of the overloaded function msgToG2, the Domain Specific Tag (DST) is set to
BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_, which is the one proposed in §4.2.3 of
[BLSsigRFC]. This DST name is not chosen randomly, it contains useful information. The
first one is about POP, which means that the proof of possession scheme to avoid the rogue-key
attack is used in the context of the BLS signatures BLS_SIG. The choice of the curve is BLS12381,
which is BLS12_ 381, and the hash is mapped in G2 Gs, the minimal pubkey size variant. The
XMD string is used to define that the variants of the subfunction expand_message: here, the
variant described in §5.4.1 of [HashToCurve] will be used, with as hash function SHA-256. The
RO string stands for random oracle encoding and the SSWU string the simplified Shallue-van de
Woestijne-Ulas algorithm to map an element of a field to an elliptic curve specified on this field.

Note: In the specialization of msgToGl, the DST is
set to BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_ instead of
BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_, the difference lies in the G1 ver-
sus G2 part. This issue was reported in Issue 85 and corrected by commit

0d9af2d2032960919fc6e656262e3a318922b249. This issue affected the minimal signature
size, which is not the one chosen for Ethereum 2.0.

Note: The mc1BnG2_hashAndMapTo is then specific to fit in the needs of specific applications,
in which Ethereum 2.0 fits. The usage for the bls project with proof of possession for the
variants minimal signature size and minimal pubkey size are also respected. It may be however
not convenient for other applications, which may need to specify a proper DST.

With all these parameters in mind, it is not surprising to see in the code two functions that
implement the hash_to_curve function described in §3 of [HashToCurve].

Ref.: 20-07-732-REP Quarkslab SAS 37

https://github.com/herumi/mcl/issues/85
https://github.com/herumi/mcl/commit/0d9af2d2032960919fc6e656262e3a318922b249

526

527
528
529
530
531

Public

Listing 4.5: msgToG2 method (include/mcl/mapto_wb19.
hpp#L526-531).

void msgToG2(G2&% out, const void *msg, size_t msgSize, const void *dst, size_t
—dstSize) const

{
Fp2 t[2];
hashToFp2(t, msg, msgSize, dst, dstSize);
Fp2ToG2(out, t[0], &t[11);

}

At this point, we will not continue to dig into all the functions and will only describe some
recommendations about the underlying functions. Note that for now on the DST requirements
are not checked, which are that the length of the DST must be nonzero and at most 255 bytes,
see respectively §3.1 and §5.4.1 of [HashToCurve].

These checks may be done in the expand_message_xmd function, implemented in

void expand_message_xmd(uint8_t out[], size_t outSize, const void *msg, size_t,
—msgSize, const void *dst, size_t dstSize)

However, the test to verify the second property on the DST is in an assert check, which is
removed when the compilation uses the flag ~-DNDEBUG, which is by default how both the mcl
and bls projects are compiled.

Another test seems to be too restricted, since the function must abort if [outSize/32] > 255 =
outSize > 8161, which is a condition on n for the first part of the condition or about outSize
for the second part. Such a test exists, in an assert too, but it limits outSize to 256 bytes,
instead of the 8160 allowed.

assert((outSize J mdSize) == 0 && O < outSize && outSize <= 256);

This assert gives us also a restriction on outSize, since it must be a multiple of 32. It is not
a requirement of [HashToCurve], since in case of an output size different than a multiple of 32
bytes, a substring function will be called to keep only the necessary bytes. All these remarks
do not involve a problem for the Ethereum 2.0 usage on this function, but it involves that the
mcl project may not be used as a building block for a general purpose.

Note: We think that the assert politic may be reviewed, in order to have different behavior
depending on the debug purpose, e.g., the assert (0) in the code, and verification of the input.

The second part of the msgToG2 function uses the sswuG2 function, which in a comment
refers to another implementation in https://github.com/algorand /bls sigs ref, most precisely
in python-impl/opt_swu_g2.py. This implementation is trivially not constant time. Note
that a constant time implementation is proposed in §G.2.3 of [HashToCurve]. Having such a
non-constant time implementation for Ethereum 2.0 is not necessarily.

Note: In PR 86, we added the test vectors of [HashToCurve| which corresponds to the cases
that concern Ethereum 2.0, i.e., the one in §J.10.2 and §K.1. This PR was merged into master
and refined in commit 2758b01440744a5e52371a6ab55ae05b26ed5955. In [HashToCurve], the
output length for each test is always a multiple of 32, which is the only length that would be
accepted by the implementation.

Ref.: 20-07-732-REP Quarkslab SAS 38

https://github.com/algorand/bls_sigs_ref
https://github.com/herumi/mcl/pull/86
https://github.com/herumi/mcl/commit/2758b01440744a5e52371a6ab55ae05b26ed5955

420
421
422
423
424

Public

4.2.2 The mulCT functions

In BLSsig, a way to protect the secret key is to implement a constant-time multiplication
algorithm when the secret key is used. It allows to mitigate some side-channel attacks, especially
the timing ones. In the API of the mcl project, two functions provide an implementation of a
point (i.e., a mc1BnG2 in the case of a signature for our case) on an elliptic curve by a scalar
(i.e., a mc1BnFr)

Listing 4.6: Multiplication methods (include/mcl/bn.
h#1420-424).

MCLBN_DLL_API void mclBnG2_mul (mclBnG2 #*z, const mclBnG2 *x, const mclBnFr *y);
/%
constant time mul
*/
MCLBN_DLL_API void mclBnG2_mulCT(mclBnG2 *z, const mclBnG2 *x, const mclBnFr *y);

We however do not more dig into these functions. A private communication in end October
with the author of the libraries informs us that the current mulCT function is not constant-time
and that such a constant-time implementation is planned to be pushed in the next few months.

Ref.: 20-07-732-REP Quarkslab SAS 39

Public

5. Conclusion

5.1 Regarding the code review

The code review covered both the bls and the mcl libraries, the latter being the cornerstone of
former.

The majority of the functions provided by bls are either a direct call to a function of mcl or a
short combination of them. Only a few have a more complex implementation. Therefore, most
of the time was spent on mcl.

The mcl library is quite complex. It implements advanced cryptographic primitives, including
multiple algorithmic optimizations. The library allows the user to select among three different
back ends that implement the basic operations upon which more complex ones are built, namely:
GMP, LLVM, and XBYAK.

The review process was focused in understanding the design of the mcl library as well as the
functionality used by bls. It is worth mentioning that there is little to no documentation
available. The code base has very few comments as well. These factors slowed down the
review process significantly and made it rather difficult. A lot of time and effort was needed to
understand the design and inner workings of the library.

We attempted to describe how each back end works and implements the functionality needed
by bls, in order to determine their weak points. We found that the main drawback of the mcl
library concerns its design. This approach was taken, most probably, to simplify the process of
prototyping, testing and benchmarking different implementations and optimizations. However,
it turns into a great disadvantage from a security and correctness perspective.

The lack of uniformity and clear definition regarding the interface of the back ends, and the
existing interaction between them, makes the control flow of the entire library really hard to
follow and understand.

The back ends are designed in such a way that it would seem they don't need to be fully
implemented to work. That is, if one back end does not implement one operation the default
one is used. As stated above, probably this was done to easily test and measure the performance
of different implementations at an early development stage, however, it becomes a source of
potential issues.

The current design makes it quite difficult to assess with ease which implementation of each
operation is being used at any given compilation or parametrization of the library. Due to the
complex nature of the code subtle bugs could be hard to spot and, even more importantly, go
unnoticed, weakening the overall reliability of the library. This problem is worsen by the multiple
preprocessor defines spread throughout the entire code base, and which are not always clear in
intention or value; and compile-time flags that enable conditional compilation of multiple pieces
of code.

Both the LLVM and the XBYAK back ends are very complex pieces of software, specially the
latter. They both generate native code but in very different ways. The first, generating LLVM
IR code that is compiled into assembly and subsequently into machine code. The LLVM IR
code generator is written from scratch, without resorting to any of the readily available LLVM
library to this end. The second, JITting x86/64 code using a called Xbyak, developed by the
same author. This library is very complex in nature and may deserve an audit on its own as
well. Therefore, making sure that both back ends implement the operations according to their
specification and in a robust way turns into a real challenge.

We strongly recommend addressing the remarks made throughout the report before going for-

Ref.: 20-07-732-REP Quarkslab SAS 40

Public

ward with the integration of the library into a production-like context. As discussed, the main
aspect to consider and improve is the design. However, there are other aspects that are impor-
tant and should be addressed as well, such as the parametrization of the library. In this case, it
should be clearly stated which parameters are used, their default value and their range where
applicable. This does not only affect the final user at the moment to choose how to build the
library but also affects the maintainability of the code base. There are many parameters within
the code whose purpose are not always clear, nor the full implications in how the operations
function. In this sense, we consider that the library is prone to misconfiguration.

5.2 Security concerns

The context of this audit is the use of the bls and mcl projects for Ethereum 2.0 purposes. In this
context, a difference between the implementations of the specifications may lead to an incorrect
consensus in the blockchain. In this purpose, we reviewed some of the key important points
about how inputs are processed, how the computations are performed and how the outputs are
formatted. This includes:

e the serialization and deserialization processes;
e the signature scheme implementation;

e the way to map a bit string to an element which may be used by the signature scheme.

All these points are covered by draft of RFCs [HashToCurve|, [Pairing] and [BLSsigRFC]. Even
if these drafts are still ongoing, they become more and more stable. Even if some sections may
evolve, this will probably affect Ethereum 2.0 at most marginally.

Serialization and deserialization processes allow to communicate with the external world, which
implies that some data may be malformed, intentionally or not. In this area, input data cannot
be considered as trusted data, and then it is needed that deserialization rejects all malformed
data. In the opposite, serialization needs to be always correct in order to be processed and not
rejected because of an incorrect implementation. In this line, the deserialization procedure is
not in a clear adherence with the RFC, which may lead to use incorrect data by other functions.
Even if these functions may be able to detect these nonsense data, it is important to strongly
adhere with the RFC.

The bls and mcl projects are implemented in a way that the projects may be used in more
generic projects using pairing-based cryptography than only for the Ethereum 2.0 purpose. All
of our findings about the core operations in the bls and mcl projects were not problematic for
an Ethereum 2.0 purpose. Note however that most of the functions in the bls project assume
that checking the preconditions of the RFC were performed by the user, as the serialization /
deserialization process.

Another more important concern is about the management of the secret data, and especially the
secret keys. For now on, the management of the secret key in memory is the sole responsibility
of the user, and there is no way to wipe secrets directly from the bls API. Using the secret key
in core BLS signature implementation is for now not constant time, as the main author wrote
to us. As the comment on the mc1BnG2_mulCT states that the implementation is constant time,
we think that the documentation must be updated to warn about.

The few documentation available is also a security concern, in the sense that it is difficult for
a user to infer if a function has the expected behaviour, and often relies only on the fact that
the name of the function and its arguments seems to match something expected. The design
choice of the function, e.g., the #if 1 in the blsAggregateVerifyNoCheck function is also
questionable, since it looks close to a research investigation to provide some speed-up instead

Ref.: 20-07-732-REP Quarkslab SAS 41

Public

of something ready for production. It may also be more difficult to maintain the base code by
a larger community.

All in one, we think that the bls and mcl projects are not mature enough to match the security
expectations of a sensitive project, as the Ethereum 2.0 one.

Ref.: 20-07-732-REP Quarkslab SAS 42

Public

6. Findings and Recommendations

In this section we present a summary of the most concerning findings discussed throughout the
report. The majority of them are related to design issues of the library. Although they do not
pose a strict and immediate security risk, we consider they should be addressed promptly to
improve the overall reliability, robustness and, therefore, security of the library.

Important: It is important to keep in mind that, although the issues described below are not
classified as critical, they do represent a potential risk to the library. The current design choices,
the complex nature of the implementation of the back ends and the multiple parametrization
of the library make it prone to subtle bugs that might be present in the code base.

In that regard, we strongly suggest to improve some of the aspects mentioned below.

6.1 Issue: Lack of documentation

Description: Except the bls and mcl APIs and the READMEs, there is little to no documen-
tation on both projects.

Recommendation: Having an exhaustive documentation will help to better understand the
technical choices that were done in the libraries, will help the users to use the libraries in the
best way, and may help to federate a community to maintain and enhance the code for its
different usages. This will also help future audits of the libraries.

References: -

Related issues: -

6.2 Issue: Inconsistent back end interface (mcl library)

Description: Each back end implements the operations needed in a very different way. Under
the current design it is not possible to clearly see the boundaries of each back end specially
when the implemented operations are used. More importantly, the interfaces of the back ends
differ from each other greatly. This makes the initialization function of the Op struct (init)
particularly complex (the problem is increased given the multiple options, back end variations
and conditionally compiled blocks of code). The details of how the functions implemented in
the selected back end are difficult to see with the clarity expected for this kind of library.

Recommendation: We recommend providing a uniform and well-defined interface across all
back ends considering initialization and finalization routines as well. This would greatly improve
the clarity and readability of the code base. It would allow the users of the library to know
exactly which operations are implemented by each back end and how and where they are used.

References: The GMP back end, The LLVM back end, The XBYAK back end and Initialization
of the Op structure.

Related issues: Issue: Ambiguous interaction between back ends (mcl library), Issue: Potential
inconsistency between compile-time and run-time parameters in Op structure initialization (mcl
library).

Ref.: 20-07-732-REP Quarkslab SAS 43

Public

6.3 Issue: Ambiguous interaction between back ends (mcl library)

Description: The current relationship, and subsequent interactions, between the different back
ends is not clear. The current design seems to allow for "incomplete" implementations of each
one (that is, it doesn't seem necessary for a particular back end to implement all the required
operations). When this happens, the "default" implementation seems to be used. The latter is
difficult to determine given the complexity of the Op: : init function (for the reasons commented
in issues Issue: Inconsistent back end interface (mcl library) and Issue: Potential inconsistency
between compile-time and run-time parameters in Op structure initialization (mcl library)) and
the possible parametrization of the library.

Recommendation: In case a fallback/default mechanism between the different back ends
is allowed, make it explicit. This can be contemplated in the interface of each back end (as
proposed in issue Issue: Inconsistent back end interface (mecl library)).

References: The GMP back end, The LLVM back end, The XBYAK back end, Initialization
of the Op structure, Compilation flags and Preprocessor defines.

Related issues: Issue: Ambiguous interaction between back ends (mcl library), Issue: Ambigu-
ous library parametrization (mcl library).

6.4 Issue: Ambiguous library parametrization (mcl library)

Description: The mcl library provides multiple ways for parametrization. The most important
parameters are the ones that specify which back end to use. However, there are many more.
Some of them are used to specify the unit size, the maximum bit size for FpT, whether or not
the VINT module uses a fixed buffer and so on. Others are related to the configuration on the
Cybozulib and Xbyak libraries. Only a few are documented.

On the other hand, some of them which, in principle, seem to be mutually exclusive can be set
simultaneously leading to potentially incorrect builds.

Recommendation: Document all configuration flags/parameters customizable by the user,
detailing possible values and the default one. In case there are parameters that should be used
mutually exclusive, enforce it in the code base and the build system scripts as well. Customizable
parameters from libraries should also be included in the documentation.

References: Compilation flags, Preprocessor defines, Cybozulib and Xbyak libraries integration,
and Build system (we also discussed them in general throughout the entire Back ends: Internals
section).

Related issues: Issue: Lack of documentation, Issue: Multiple and potentially inconsistent
build systems (mcl library).

6.5 Issue: RFCs API is not completely followed

Description: In many to all the functions of the bls and mcl APIs, the preconditions state
by especially the RFCs are not checked, or only partially, and sometimes in assert, which
are removed with the -DNDEBUG compilation flags. Comments in the .h defining the API may
contain some information, but not all of them and is not always up-to-date. It lets the sole
responsibility of the user to implement the checks, in addition to deserialize the inputs and
serialize the outputs.

Recommendation: As it is, the bls API, which will be the component targeted by many

Ref.: 20-07-732-REP Quarkslab SAS 44

Public

cryptographic applications, can not be used in a security perspective without implementing an
extra API layer around the bls API. If it must be complicated to have a general purpose API
for all the applications combining both security and efficiency, implementing this extra layer for
the function in §2 of [BLSsigRFC] may however be used by many applications and may serve
as example to implement more complicated primitives.

References: The hash_to curve function and General usage of the bls project.

Related issues: Issue: Lack of documentation.

6.6 Issue: Management of the secrets

Description: The bls API does not contain a function, for example blsSecretKeyClear, which
will wipe the secrets in memory. It then lets the users the responsibility to wipe the memory
by themselves. The function that will be used the most with the secret key, the mulCT function,
is not yet constant time, as said by the main author of the library, who plans to implement
such a constant-time multiplication in a few months. Such an implementation will mitigate
side-channels attacks, especially the timing ones.

Recommendation: The implementation of a zeroization of the secret key will be really valu-
able for a lot of usage, which needs to be done with care. Having a reference implementation
in the bls project will allow to avoid some custom zeroization which may not be really secure.
About mulCT, the comment indicates that the function is constant-time, which doesn't seem to
be the case actually.

References: Management of the secret keys and The mulCT functions.

Related issues: -

6.7 Issue: Pointer dereference issues

Description: Both libraries do not check for the validity of the pointers received. All the
checks are left to the user of the libraries. Any misuse on behalf of the user can lead to invalid
memory accesses in any of the libraries.

Recommendation: Add checks in all the functions publicly exposed by the library.
References: Pointer dereference.

Related issues: -

6.8 Issue: Potential inconsistency between compile-time and run-
time parameters in Op structure initialization (mcl/ library)

Description: The Op::init function, responsible for initializing the Op structure, includes a
mode parameter. It is used to select which back end to use. Its possible values are: FP_AUTO,
FP_GMP, FP_GMP_MONT, FP_LLVM, FP_LLVM_MONT, and FP_XBYAK. Under current conditions this
parameter is set to FP_AUTO (as it is the default value used by the functions calling Op: :init).
Within the Op:init function, this parameter is updated according to the back end selected at
compile time (using MCL_USE_GMP, MCL_USE_LLVM or MCL_USE_XBYAK) to match it. However, this
update only works in cases where the value of the mode is set to FP_AUTO. The code in charge of
the update is compiled conditionally (depending on the flags listed previously). This parameter
is used during the initialization process to enable/disable different features/optimizations.

Ref.: 20-07-732-REP Quarkslab SAS 45

Public

To summarize, the mode parameter is directly related to the MCL_USE_{GMP,LLVM, XBYAK} flag.
The current approach is prone to misconfiguration, and it could lead to potential issues. If
the aforementioned case arises (that is, the default value is changed), a "de-synchronization"
between the mode parameter and the selected back end will occur. This error will go unnoticed
and the library will not behave as expected by the user.

Recommendation: We recommend re-engineering this part of the code to make it robust to
the described scenario. Particularly, the initialization of the Op should not depend on possibly
conflicting parameters. It is also recommended to review the entire function to improve its
readability as there might be other related issues, given the complexity of the initialization
process.

References: Initialization of the Op structure, and Compilation flags.

Related issues: Issue: Inconsistent back end interface (mcl library), Issue: Ambiguous inter-
action between back ends (mcl library), Issue: Ambiguous library parametrization (mcl library).

6.9 Issue: Tests do not contemplate the main possible parameters in
an automatic way (mcl/ library)

Description: There are tests available to run, however, some require to manually select the
mode which make them unsuitable for execute them automatically on each commit. Also, the
tests consider the library is built under only one back end at a time.

Recommendation: We recommend to modify the tests to run all modes in an automatic way,
which would allow contemplation of the testing of all the different back ends at the same time.

References: Testing.

Related issues: -

6.10 Issue: Potential issues with the FpGenerator (mcl library)

Description: The FpGenerator is responsible for JITing the implementation of the operations,
using the Xbyak library to that end. The initialization method of this class does not check the
return values of certain functions, which indicate if the calls were successful or not. Under
certain conditions these functions generate an exception, which ultimately stops the execution
of the program (there is a compilation flag to control this behavior). However, when exceptions
are disabled the error goes unnoticed since, as mentioned, the return values are not check.

The FpGenerator only initializes the operations when the CPU has support for AVX technology.
Otherwise, it resorts to the "default" back end. However, the user is not properly warn about
this (since the library can be compiled for the XBYAK back end anyways.

Another point to consider is the buffer where the JITed code is written to has a fixed size. Its
value is not properly documented (though it seems to be enough for the current configuration).

Recommendation: We recommend adding the necessary checks so the library can properly
work under the described conditions, and behave as the user of the library would expect.

References: [nitialization of the XBYAK back end and Initialization of the Op structure.

Related issues: -

Ref.: 20-07-732-REP Quarkslab SAS 46

Public

6.11 Issue: Libraries not maintained for a general purpose

Description: The bls and mcl libraries may be used for signature scheme algorithms in the
minimal-signature-size or minimal-pubkey-size variants, as well as using the proof of possession
schemes. However, the DST enforced in some part of the code for the hash function may not
serve general purposes. This issue do however not concern the Ethereum 2.0 purpose.

Recommendation: The library seems to put a lot of effort to be compatible with the Ethereum
2.0 specifications, as indicated in Issue #66. This choice is understandable because of the release
of the Ethereum 2.0 blockchain in a few weeks. However, documenting that other functionalities
are not yet fully supported will help users to use the libraries for the supported purposes.

References: PopProve and PopVerify and The hash_to curve function.

Related issues: Issue: Lack of documentation.

6.12 Issue: Multiple and potentially inconsistent build systems (mcl/
library)

Description: There are two build system scripts (for Unix-like systems). One corresponds to
make and the other to cmake. Although, the readme.md file in the project presents both, it is
not clear they build the library in the same exact way. This problem is aggravated by the many
flags and parameters that can be use to build the library.

Recommendation: We recommend unifying the build system, for clarity and consistency.
The use of the compiled version should be enforced in projects depending on this library as
well.

References: Build system.

Related issues: Issue: Ambiguous library parametrization (mcl library).

6.13 Issue: Inconsistent use of mc/ APl on behalf of the bls library

Description: The mcl library provides an API to access the functionalities it provides. How-
ever, the bls library does not use them and calls what can be consider "internal" functions of
mcl. Most of the time, the functions implemented in bls are a copy of the functions provided
by mecl. This can lead to errors in case the mcl library changes.

Recommendation: We recommend to use the public interface provided by the mcl library
whenever possible (or document the reasons of why is done in case the opposite approach has
to be taken).

References: mcl library API usage.

Related issues: -

Ref.: 20-07-732-REP Quarkslab SAS 47

https://github.com/herumi/bls/issues/66

Public

7. Bibliography

[BLScurve] P. Barreto, B. Lynn and M. Scott, Constructing elliptic curves with prescribed
embedding degrees, SCN 2002, LNCS, vol. 2576, pp 257267, Springer 2003. https:
//eprint.iacr.org/2002/088.pdf

[BLSsig] D. Boneh, B. Lynn and H. Shacham, Short Signatures from the Weil Pairing,
Journal of Cryptology. 17 (4), pp 297-319, 2004

[BLSsigRFC] D. Boneh, S. Gorbunov, R. Wahby, H. Wee and Z. Zhang, BLS Signatures, work
in progress, Internet-Draft, version 4, September 2020. https://tools.ietf.org/html/
draft-irtf-cfrg-bls-signature-04

[EIP-2333] C. Beekhuizen, BLS12-381 Key Generation, EIP-2333, September 2019. https://
eips.ethereum.org/EIPS /eip-2333

[Eth2.0Ph0] Ethereum 2.0 Phase 0 -- The Beacon Chain, 15 September 2020. https://github.

com/ethereum/eth2.0-specs/blob/dev/specs/phasel/beacon-chain.md

[GuiPai] Guide to Pairing-Based Cryptography, Nadia El Mrabet and Marc Joye, Chapman
& Hall/CRC, 2016

[HashToCurve| A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby and C. Wood, Hashing to
Elliptic Curves, work in progress, Internet-Draft, version 10, June 2020. https:
//tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10

[Pairing] Y. Sakemi, T. Kobayashi, T. Saito and R. Wahby, Pairing-Friendly Curves, work
in progress, Internet-Draft, version 8, September 2020. https://tools.ietf.org/html/
draft-irtf-cfrg-pairing-friendly-curves-08.html

Ref.: 20-07-732-REP Quarkslab SAS 48

https://eprint.iacr.org/2002/088.pdf
https://eprint.iacr.org/2002/088.pdf
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04
https://eips.ethereum.org/EIPS/eip-2333
https://eips.ethereum.org/EIPS/eip-2333
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/beacon-chain.md
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-08.html
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-08.html

	Project Information
	Executive Summary
	Context
	Methodology
	Chronology
	Communication channel
	Deliverables

	Report synthesis
	Synthesis
	Findings and recommendations

	Code overview
	Audited versions
	The bls library
	Overview
	Serialization/Deserialization
	General observations

	The mcl library
	Overview
	Back ends: Internals
	Back ends: Conclusion
	Serialization/Deserialization
	General observations

	Adeherence with the specifications
	The bls library
	Bird's eye view on pairings for Ethereum 2.0
	Usage of the library for the Ethereum 2.0 purpose
	General usage of the bls project

	The mcl library
	The hash_to_curve function
	The mulCT functions

	Conclusion
	Regarding the code review
	Security concerns

	Findings and Recommendations
	Issue: Lack of documentation
	Issue: Inconsistent back end interface (mcl library)
	Issue: Ambiguous interaction between back ends (mcl library)
	Issue: Ambiguous library parametrization (mcl library)
	Issue: RFCs API is not completely followed
	Issue: Management of the secrets
	Issue: Pointer dereference issues
	Issue: Potential inconsistency between compile-time and run-time parameters in Op structure initialization (mcl library)
	Issue: Tests do not contemplate the main possible parameters in an automatic way (mcl library)
	Issue: Potential issues with the FpGenerator (mcl library)
	Issue: Libraries not maintained for a general purpose
	Issue: Multiple and potentially inconsistent build systems (mcl library)
	Issue: Inconsistent use of mcl API on behalf of the bls library

	Bibliography

