
Security evaluation of dalek-cryptography li-
braries

The subtle, curve25519-dalek and bulletproofs libraries

Ref. 19-06-594-REP
Version 1.2

Date August 6th, 2019
Made for The TARI LABS

Conducted by Quarkslab

Quarkslab SAS
13 rue Saint Ambroise

75011 Paris, France

Contents
1 Project Information 1

2 Executive Summary 2
2.1 Context . 2
2.2 Methodology . 2
2.3 Chronology . 2
2.4 Report synthesis . 3

2.4.1 Synthesis . 3
2.4.2 Issues and recommendations . 3

3 Code overview 5
3.1 Audited versions . 5
3.2 Dependencies . 5

3.2.1 The subtle library . 5
3.2.2 The curve25519-dalek library . 5
3.2.3 The bulletproofs library . 6

4 The subtle library 7
4.1 Introduction . 7
4.2 Code review and constant time validation . 7

4.2.1 Code review . 7
4.2.2 Constant time validation . 9
4.2.3 Inlining optimizations . 11

4.3 Conclusion . 12

5 The curve25519-dalek library 14
5.1 Code Review . 14

5.1.1 u64 back-end . 14
5.1.2 avx2 back-end . 15
5.1.3 Curve Points . 16
5.1.4 Serialization . 16
5.1.5 Constant Time . 16

5.2 Issues . 16
5.2.1 Overflow in Scalar52 . 16
5.2.2 Optimizations . 17

5.3 Conclusion . 18

6 The bulletproofs library 19
6.1 Purpose . 19
6.2 Protocol . 19

6.2.1 Build a proof . 19
6.2.2 Verify a proof . 30

6.3 Code review . 31
6.3.1 State machine . 31
6.3.2 Message serialization . 32
6.3.3 Constant Time . 32

6.4 Issues . 33
6.4.1 ProofShare panic . 33
6.4.2 Optimizations and recommendations . 33

Public

6.5 Conclusion . 35

7 The x25519-dalek and ed25519-dalek libraries 36
7.1 The x25519-dalek library . 36

7.1.1 Dependencies . 36
7.1.2 Public key validation . 36

7.2 The ed25519-dalek library . 37
7.2.1 Dependencies . 37
7.2.2 Notes on the usage . 38

8 Conclusion 39

Bibliography 40

Ref.: 19-06-594-REP Quarkslab SAS 2

Public

1. Project Information

Document History
Version Date Details Authors

1.2 06/08/2019 Update the Issues
and recommandations
section

Laurent Grémy & Nicolas Surbay-
role

1.1 05/08/2019 Integrate feedback from
the authors of the dalek-
cryptography libraries

Laurent Grémy & Nicolas Surbay-
role

1.0 24/07/2019 First version Laurent Grémy & Nicolas Surbay-
role

Quarkslab
Contact Position E-mail address

Frédéric Raynal Quarkslab CEO fraynal@quarkslab.com
Matthieu Duez Service Manager mduez@quarkslab.com
Laurent Grémy R&D Engineer lgremy@quarkslab.com
Guillaume Heilles R&D Engineer gheilles@quarkslab.com
Nicolas Surbayrole R&D Engineer nsurbayrole@quarkslab.com

Monero Tari Labs
Contact Position E-mail address

Cayle Sharrock Head of Engineering caylemeister@tari.com
Riccardo Spagni Co-Founder the_pony@tari.com

Ref.: 19-06-594-REP Quarkslab SAS 1

Public

2. Executive Summary

2.1 Context

The Tari Labs mandated Quarkslab in order to investigate some of the dalek libraries. The Tari
Labs has a project that implements the Tari protocol which relies on some of these libraries
and especially the use of cryptographic primitives. In addition, the use of Bulletproofs [Bul]
and its implementation by the authors of the dalek libraries will allow them to enable efficient
confidential transactions on the blockchain in a near future.

2.2 Methodology

The audit has been divided into three stages with a fourth optional one. The stages were the
following:

• Stage 1: focused on getting into the code base, the documentation and other mate-
rials available to identify the dependencies between the different projects under dalek-
cryptography1 and on understanding the main points of interests for the next stages of the
audit.

• Stage 2: focused on assessing the low-level cryptographic operations performed in the
libraries, mainly in subtle and curve25519-dalek.

• Stage 3: focused on assessing the implementation of bulletproofs and provide feedback
on how to use it in the context of Tari.

• Stage 4: focused on assessing the implementation of x25519-dalek and ed25519-dalek.

2.3 Chronology

The audit was performed by two security engineers for a total of 30 man-days between the 4th
of June and the 28th of June. Some details about the chronology are provided below:

• April 23rd, 2019: quote sent.
• June 4th, 2019: beginning of the audit.
• June 11th, 2019: internal meeting.
• June 21st, 2019: internal meeting.
• June 28th, 2019: end of the audit.
• July 24th, 2019: report sent.
• July 29th, 2019: final meeting.

1 https://github.com/dalek-cryptography

Ref.: 19-06-594-REP Quarkslab SAS 2

https://github.com/dalek-cryptography
https://github.com/tari-project/tari
https://github.com/dalek-cryptography

Public

2.4 Report synthesis

2.4.1 Synthesis

Among the dalek-cryptography projects, five projects were of main interest to the Tari Labs.
All these projects are implemented in Rust.

• https://github.com/dalek-cryptography/subtle: traits and utilities for constant-time
cryptographic implementations (BSD 3-Clause license).

• https://github.com/dalek-cryptography/curve25519-dalek: implementation of group op-
erations of Ristretto and on Curve25519 (BSD-3-Clause license).

• https://github.com/dalek-cryptography/bulletproofs: implementation of Bulletproofs us-
ing Ristretto (MIT license).

• https://github.com/dalek-cryptography/x25519-dalek: X25519 elliptic curve Diffie-
Hellman key exchange using curve25519-dalek (BSD 3-Clause license).

• https://github.com/dalek-cryptography/ed25519-dalek: Ed25519 signing and verification
(BSD 3-Clause license).

In coordination with the Tari Labs, the Quarkslab’s audit mainly focuses on the first three
projects and only reviews the last two projects in a birds eye view way. We summarize in
Figure 2.1 the dependencies between the projects and, in red, the audited projects.

subtle

curve25519-dalek

ed25519-dalek x25519-dalek bulletproofs

Fig. 2.1: Dependencies between the dalek-cryptography projects.

2.4.2 Issues and recommendations

The issue impact is set to High when a dependent library cannot fix the issue in an important
feature of an audited library. The Medium impact is used to indicate important issues that can
be mitigated by the dependent libraries. Others issues are marked as Low, Option or Debug.

The subtle library

ID Vulnerability Recommendation Impact

subtle-1
New optimizations can be added
in the Nightly version of Rust
and can break the constant time
property

Add some benchmarks and tests
to verify the constant time prop-
erty with a new Nightly Rust ver-
sion

Option

Ref.: 19-06-594-REP Quarkslab SAS 3

https://github.com/dalek-cryptography/subtle
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/x25519-dalek
https://github.com/dalek-cryptography/ed25519-dalek

Public

The curve25519-dalek library

ID Vulnerability Recommendation Impact

Curve-1
Overflow in Scalar52 when
importing a Scalar with the
from_bits method

Assert in Scalar52::to_bytes that
unused bits are null Medium

Curve-2

The methods multiscalar_mul
and vartime_multiscalar_mul
on an EdwardsPoint will re-
ject a customize iterator with
imprecise but correct size_hint

Allow usage of a custom iterator
and validate the size during the
iteration on each iterator Option

Curve-3
In windows.rs, an assert_debug
method accepts erroneous values

Reduce the interval of accepted
values Debug

The bulletproofs library

ID Vulnerability Recommendation Impact

BProof-1
A malicious party can send a
crafted serialized message to the
dealer that forces the dealer to
panic

Do extra validation after deseri-
alizing ProofShare High

BProof-2
The size_hint method of Ag-
gregatedGensIter iterator returns
the original size of the iterator

Return the remaining size of the
iterator Option

The x25519-dalek library

ID Vulnerability Recommendation Impact

X25519-1
Some public key may lead to
compute the all-zero shared se-
cret

Verify if a public key removes the
contribution of the private key Option

Optional dependency

ID Vulnerability Recommendation Impact

Serde-1

The issue #151 of rmp-serde
allows an attacker to allocate
more than 2 GB of memory with
a short serial. In a memory-
constrained environment, this
may slow down the system and
lead to a crash of the application

Patch the library to verify the
length before allocating memory,
or perform small memory alloca-
tions

Medium

Serde-2
Custom implementation of Se-
rialize and Deserialize do not
work with all serde modules (e.g.,
serde-json)

List the serde modules that
are compatible with the library
or modify the implementation
of the Serialize and Deserialize
traits

Option

Ref.: 19-06-594-REP Quarkslab SAS 4

https://github.com/3Hren/msgpack-rust/issues/151

Public

3. Code overview

3.1 Audited versions

We list below the audited versions of the five projects listed in Section 2.4.1:
• subtle version 2.1.0, commit 34596d5701d7aa0bb88a76ec97cac8f51018988b ;
• curve25519-dalek version 1.2.1, commit 45b316d26b64e8dc729b3463911a919cf31c6f4c;
• bulletproofs version 1.0.2, commit 6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7;
• x25519-dalek version 0.5.2, commit 89c58a991bc958534bf28c646e1f0f88ce8333e6 and
• ed25519-dalek version 1.0.0-pre.1, commit e527280d2e5781e070da269893cc514392312fdd.

We set the Rust version to nightly-2019-06-11. These libraries were compiled for the x86_64
architecture with avx2 support.
These versions were the last releases of each library at the beginning of the audit.

3.2 Dependencies

Note: Since the x25519-dalek and ed25519-dalek projects were not the main focus of the audit,
we mention general information and we report on these projects in the appropriate section, i.e.,
Section 7.

In Figure 2.1, we draw a diagram that lists the dependencies between the different audited
libraries. Note that in order to use the targeted version of the audit, we modified the file
Cargo.toml of each library.

3.2.1 The subtle library

The subtle library does not rely on any external library other than the ones coming with a fresh
Rust environment. The compilation has been done with the following command:

$ RUSTFLAGS="-C target_feature=+avx2" cargo build --release

3.2.2 The curve25519-dalek library

This library relies on2:
• byteorder version ^1.2.3 : Rust library for reading/writing numbers in big endian and little

endian.
• clear_on_drop version =0.2.3 : helpers for clearing sensitive data on the stack and heap.
• digest version ^0.8 : collection of cryptography-related traits.
• rand_core version ^0.3.0 : Rust library for random number generation.
• subtle version ^2 : forced to be version 2.1.0.
2 The version number follows the cargo caret requirements.

Ref.: 19-06-594-REP Quarkslab SAS 5

https://github.com/dalek-cryptography/subtle/tree/34596d5701d7aa0bb88a76ec97cac8f51018988b
https://github.com/dalek-cryptography/curve25519-dalek/tree/45b316d26b64e8dc729b3463911a919cf31c6f4c
https://github.com/dalek-cryptography/bulletproofs/tree/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7
https://github.com/dalek-cryptography/x25519-dalek/tree/89c58a991bc958534bf28c646e1f0f88ce8333e6
https://github.com/dalek-cryptography/ed25519-dalek/tree/e527280d2e5781e070da269893cc514392312fdd
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#caret-requirements

Public

• packed_simd ^0.3.0 (optional): portable packed SIMD Vectors for Rust standard library.
• serde version ^1.0 (optional): serialization framework for Rust.

Note that all these dependencies used 7 libraries as a back-end. We did not check if these projects
have vulnerabilities or bugs that can affect the curve25519-dalek library, except obviously the
subtle library.
The compilation has been done with the following command:

$ RUSTFLAGS="-C target_feature=+avx2" cargo build --release --no-default-features --
↪→features "std avx2_backend"

3.2.3 The bulletproofs library

This library relies on:
• byteorder version ^1 : Rust library for reading/writing numbers in big endian and little

endian.
• clear_on_drop version ^0.2 : helpers for clearing sensitive data on the stack and heap.
• curve25519-dalek version ^1.0.3 : forced to be version 1.2.1.
• digest version ^0.8 : collection of cryptography-related traits.
• failure version ^0.1 : error management.
• merlin version ^1.1 : composable proof transcripts for public-coin arguments of knowledge.
• rand version ^0.6 : a Rust library for random number generation.
• serde version ^1 : serialization framework for Rust.
• serde_derive version ^1 : serialization framework for Rust.
• sha3 version ^0.8 : SHA-3 (Keccak) hash function.
• subtle version ^2 : forced to be version 2.1.0.

Note that all these dependencies used 29 libraries as a back-end. We did not check if these
projects have vulnerabilities or bugs that can affect the bulletproofs library, except obviously
the subtle and curve25519-dalek libraries. We, however, took a quick look at merlin, since it is
a main component of the Bulletproofs implementation.

Note: To obtain the number of external librairies, we use the command
cargo tree --no-dev-dependencies1.

The compilation has been done with the following command:

$ RUSTFLAGS="-C target_feature=+avx2" cargo build --release --features "avx2_backend"

1 https://github.com/sfackler/cargo-tree

Ref.: 19-06-594-REP Quarkslab SAS 6

https://github.com/sfackler/cargo-tree

Public

4. The subtle library

4.1 Introduction

The subtle library contains several constant time arithmetical primitives, i.e., primitives for
which computation time may depend on the types but never on the actual values or data being
used.
The library documentation also includes the following warning:

This code is a low-level library, intended for specific use cases implementing
cryptographic protocols. It represents a best-effort attempt to protect against some
software side channels. Because side-channel resistance is not a property of software
alone, but of software together with hardware, any such effort is fundamentally
limited.

USE AT YOUR OWN RISK

The constant time property is thus only a best effort. We understand this property as follows:
• executed instructions do not depend on a secret (the values of a secret are not tested with

a condition).
• a secret does not determine an address or an offset that will be used to retrieve data

This audit verifies that the code of the library and generated assembly with the frozen version of
Rust do not have any trivial time leak. The audit does not validate that the library is immune
to time leaks on a specific piece of hardware or outside the scope of the library.

4.2 Code review and constant time validation

The first part of the audit of the subtle code was to read and understand the code.
As the project does not include any benchmark to assess the constant time features, the second
part was dedicated to test them.

4.2.1 Code review

The library defines a Boolean type Choice to implement constant time Boolean arithmetic and
some trivial conditional operations:

• EQ on two integers.
• EQ on two arrays of integers with the same length.
• OR on two Choice.
• AND on two Choice.
• XOR on two Choice.
• NOT on a Choice.
• conditional selection and assignment of an integer depending on a Choice.
• conditional negation of an integer depending on a Choice.

The library also defines a CtOption type that attempts to represent the Rust Option type with

Ref.: 19-06-594-REP Quarkslab SAS 7

https://doc.rust-lang.org/std/option

Public

constant time and constant memory operations. This type uses a Choice to define if the value
is accessible.
To implement this library with no variable time operation, the library has no dependency and
limits the usage of if statements. The only present if statement is to assert that two arrays
have the same length:

impl<T: ConstantTimeEq> ConstantTimeEq for [T] {
#[inline]
fn ct_eq(&self, _rhs: &[T]) -> Choice {

let len = self.len();

if len != _rhs.len() {
return Choice::from(0);

}
...

}
}

In addition, all operations between two Boolean values don’t use lazy boolean operators that
skip the evaluation of the right operand if the result is already determined by the left operand.
Finally, the library tries to prevent compiler optimizations by inserting a black_box. The goal is
to force the compiler to use Choice as an integer and to avoid the generation of Boolean-specific
assembly instruction when using Choice.

/// This function is a best-effort attempt to prevent the compiler
/// from knowing anything about the value of the returned `u8`, other
/// than its type.
///
/// Uses inline asm when available, otherwise it's a no-op.
#[cfg(all(feature = "nightly", not(any(target_arch = "asmjs", target_arch = "wasm32
↪→"))))]
fn black_box(input: u8) -> u8 {

debug_assert!((input == 0u8) | (input == 1u8));

// Pretend to access a register containing the input. We "volatile" here
// because some optimisers treat assembly templates without output operands
// as "volatile" while others do not.
unsafe { asm!("" :: "r"(&input) :: "volatile") }

input
}
#[cfg(any(target_arch = "asmjs", target_arch = "wasm32", not(feature = "nightly")))]
#[inline(never)]
fn black_box(input: u8) -> u8 {

debug_assert!((input == 0u8) | (input == 1u8));
// We don't have access to inline assembly or test::black_box or ...
//
// Bailing out, hopefully the compiler doesn't use the fact that `input` is 0 or␣

↪→1.
input

}

However, the usage of this library must follow some guidelines to preserve the constant time
features:

• The constant time property is only valid for values of the same type. The comparison

Ref.: 19-06-594-REP Quarkslab SAS 8

https://doc.rust-lang.org/reference/expressions/operator-expr.html#lazy-boolean-operators

Public

between two u8 may have a different duration than the comparison between two u128.
• During the comparison of two slices with the same length, the comparison duration de-

pends on the length. The length should not be a secret.
• When using the methods map and and_then of CtOption, the lambda function given in

parameters must be executed in constant time.
• When using the ConditionallyNegatable trait, the Neg trait must be implemented in con-

stant time.

An internal crate is present in the folder fuzz but doesn’t work with the current version of
subtle (the trait subtle::ConditionallyAssignable does not exist in the current version of subtle).
The code can be easily adapted and used to fuzz the method conditional_assign with different
integer sizes.

4.2.2 Constant time validation

The project contains no benchmark to validate the constant time property. In addition, the
library recommends using the nightly version of Rust that has a release once a day with new
improvements or features. The generated bytecode may change between two nightly versions
with new optimizations that may break the constant time feature.
The issue #43 on Github tests the constant time functionality of some methods of subtle with
dudect.
During the audit, we implemented our own tests to check if the compiled code is in constant
time. The following code has been used to compute the average and the standard deviation of
a method’s duration:

#![feature(asm)]

use subtle::*;

#[inline]
fn gettime() -> u64 {

let lo : u64;
let hi : u64;
unsafe {

asm!("lfence;rdtsc;lfence" : "={eax}" (lo), "={edx}" (hi) : : "eax", "edx");
}
lo | (hi << 32)

}

trait Callable {
fn call(&mut self);

}

fn time_test(desc : &str, foo: &mut dyn Callable, max: u64) {
let n = 10000000;
let mut v = 0;
let mut variance = 0;
for _ in 0..n {

let mut time = max;
// remove OS interrupt or big difference from the capture
while time >= max {

(continues on next page)

Ref.: 19-06-594-REP Quarkslab SAS 9

https://github.com/dalek-cryptography/subtle/issues/43

Public

(continued from previous page)
time = gettime();
foo.call();
time = gettime() - time;

}
v += time;
variance += time*time;

}
let average = (v as f64) / (n as f64);
let deviation = (((variance as f64) / (n as f64)) - (average * average)).sqrt();

println!("{} average: {}", desc, average);
println!("{} standard deviation: {}", desc, deviation);

}

...

No constant deviation has been found between the call of a subtle method with two different
parameters. Some little differences may occur but may be the consequence of OS interruptions,
cache misses or the activity of another process during the test. This deviation was near zero
and not constant between two executions. In addition, the previous code was also tested with
the mfence memory barrier with a similar result.
As such approach is insufficient by itself and can only raise red flags in case of obvious time
leaks, we analyzed the test binary to verify that the generated assembly code did not have any
issue and checked for less obvious potential leaks.
For example, for the test of the OR operation between two Choice, we have the following
generated code:

struct Vor {
first: Choice,
second: Choice,
res: bool

}
impl Callable for Vor {

fn call(&mut self) {
self.res = bool::from(self.first | self.second);

}
}

; <test_subtle::Vor as test_subtle::Callable>::call
push rbx
mov rbx,rdi
mov al,BYTE PTR [rdi+0x1]
or al,BYTE PTR [rdi]
movzx edi,al
call QWORD PTR [rip+0x3a88e] ; subtle::black_box
test al,al
setne BYTE PTR [rbx+0x2]
pop rbx
ret

; subtle::black_box
sub rsp,0x1
mov BYTE PTR [rsp],dil

(continues on next page)

Ref.: 19-06-594-REP Quarkslab SAS 10

Public

(continued from previous page)
mov rax,rsp
mov al,BYTE PTR [rsp]
add rsp,0x1
ret

The Rust compiler does not optimize the code to a non-constant time assembly. However, the
black_box method is still present and adds a constant overhead. The only method containing
non-linear assembly code is the on which compares two arrays, with a loop iteration depending
on the lengths of the arrays.

4.2.3 Inlining optimizations

Many methods of subtle are tagged with #[inline]. The assembly code of these methods will not
be present on the compiled subtle library but in the dependent libraries when they need to use
these methods. As a consequence, some optimizations that were not covered by the previous
test can appear.
That was the case with the curve25519-dalek library and the EdwardPoints type. The code can
be simplified as follows when using the avx2_backend feature:

// backend/serial/u64/field.rs

#[derive(Copy, Clone)]
pub struct FieldElement51(pub (crate) [u64; 5]);

impl ConditionallySelectable for FieldElement51 {
fn conditional_select(

a: &FieldElement51,
b: &FieldElement51,
choice: Choice,

) -> FieldElement51 {
FieldElement51([

u64::conditional_select(&a.0[0], &b.0[0], choice),
u64::conditional_select(&a.0[1], &b.0[1], choice),
u64::conditional_select(&a.0[2], &b.0[2], choice),
u64::conditional_select(&a.0[3], &b.0[3], choice),
u64::conditional_select(&a.0[4], &b.0[4], choice),

])
}
...

}

// edwards.rs

#[derive(Copy, Clone)]
pub struct EdwardsPoint {

pub(crate) X: FieldElement51,
pub(crate) Y: FieldElement51,
pub(crate) Z: FieldElement51,
pub(crate) T: FieldElement51,

}

impl ConditionallySelectable for EdwardsPoint {
fn conditional_select(a: &EdwardsPoint, b: &EdwardsPoint, choice: Choice) ->␣

↪→EdwardsPoint {
(continues on next page)

Ref.: 19-06-594-REP Quarkslab SAS 11

Public

(continued from previous page)
EdwardsPoint {

X: FieldElement51::conditional_select(&a.X, &b.X, choice),
Y: FieldElement51::conditional_select(&a.Y, &b.Y, choice),
Z: FieldElement51::conditional_select(&a.Z, &b.Z, choice),
T: FieldElement51::conditional_select(&a.T, &b.T, choice),

}
}

}

The generated assembly code uses SIMD and does not use the xor instruction but creates an
equivalent logical operation.

; <<curve25519_dalek::edwards::EdwardsPoint as subtle::ConditionallySelectable>
↪→::conditional_select>:
mov rax,rdi
movzx ecx,cl
neg rcx
vmovq xmm0,rcx
vpbroadcastq ymm0,xmm0
vpandn ymm1,ymm0,YMMWORD PTR [rsi]
vpand ymm2,ymm0,YMMWORD PTR [rdx]
vpandn ymm3,ymm0,YMMWORD PTR [rsi+0x20]
vpor ymm1,ymm2,ymm1
vpand ymm2,ymm0,YMMWORD PTR [rdx+0x20]
vpor ymm2,ymm2,ymm3
vpandn ymm3,ymm0,YMMWORD PTR [rsi+0x40]
vpand ymm4,ymm0,YMMWORD PTR [rdx+0x40]
vpandn ymm5,ymm0,YMMWORD PTR [rsi+0x60]
vpand ymm6,ymm0,YMMWORD PTR [rdx+0x60]
vpor ymm3,ymm4,ymm3
vpor ymm4,ymm6,ymm5
vpandn ymm5,ymm0,YMMWORD PTR [rsi+0x80]
vpand ymm0,ymm0,YMMWORD PTR [rdx+0x80]
vpor ymm0,ymm0,ymm5
vmovdqu YMMWORD PTR [rdi],ymm1
vmovdqu YMMWORD PTR [rdi+0x20],ymm2
vmovdqu YMMWORD PTR [rdi+0x40],ymm3
vmovdqu YMMWORD PTR [rdi+0x60],ymm4
vmovdqu YMMWORD PTR [rdi+0x80],ymm0
vzeroupper
ret

Since the compiler does not determine that Choice can only get the value 0 or 1, the generated
code is still valid for any u8. Here, the inlined generated code is faster than a version with
multiple inlined calls, without breaking the linear structure. However, we cannot be sure that
the inlined code will always be linear and will keep the constant time property.

4.3 Conclusion

No issue was found in the subtle library. However, the constant time property for the map
and and_then methods depends on the lambda method given as parameter. The usage of this
library must follow some guidelines to preserve the constant time property in the dependent
libraries and binaries.

Ref.: 19-06-594-REP Quarkslab SAS 12

Public

During the audit, the library was compiled with a frozen version of nightly Rust (see Section 3.1).
We validated that the generated code was linear or with branches and conditions that do not
depend on sensitive value. However, a lot of methods can be inlined in the dependent libraries
or binaries. The inlined analyzed code was much optimized without breaking the linearity. We
could not verify that the inlined code will always keep this behavior in any context.
The lack of benchmarks in this library may lead to misunderstand the meaning of the best effort
constant time given by subtle. We recommend implementing some benchmarks about this library
to easily validate the properties on a given platform and to verify that new optimizations on
nightly Rust do not break the property.

Ref.: 19-06-594-REP Quarkslab SAS 13

Public

5. The curve25519-dalek library
The curve25519-dalek library allows performing group operations on the Curve25519 [Ber] using:

• the Montgomery form and
• the (twisted) Edwards form.

The Curve25519, an Edwards curve, is selected for many reasons: one of which is the efficiency
of the operations needed to perform usual cryptographic protocols using group operations, such
as Diffie-Hellman key exchange and signature algorithm. However, the order of the group of
points on this curve is not prime1, which may lead to deal with small order points. These
points may lead to compute predictable values, see Section 7.1.2, signature malleability and
other issues2.
A possible mitigation of these issues is to perform checks at different levels when a protocol is
run, see for example Section 8 of [EdDSA] or Section 7 of [ECS]. However, these checks are not
always easy to perform inside more complex protocols, not always implemented or impossible to
use. Based on [Ham] which deals with a prime-order group which uses Curve448 internally, the
authors of Ristretto, see [Ris] and [TRG], propose to define a prime-order group whose group
elements are represented through points on the Curve25519 using the Edwards form.
Since the API exposed in curve25519-dalek and used in bulletproofs only uses the Ristretto
operations, and then the Edwards form, we have mainly audited parts of these implementations
that are modules:

• Edwards.
• Ristretto.
• Scalar.

5.1 Code Review

The Rust language is designed to avoid misuses of pointers and buffer overflows. However, the
integer overflow or underflow is not validated on each operation to avoid a substantial overhead.
As the library curve25519-dalek manipulates big integers, this issue can have an important
impact on the correctness of the operations.
The curve25519-dalek library uses different back-ends in order to reduce the computation time
without breaking the correctness. The audit was focused on the u64 back-end and the avx2
extension.

5.1.1 u64 back-end

The u64 back-end is located in src/backend/serial/u64. It defines two structures:
• FieldElement51 with arithmetic operations modulo 2255 − 19;
• Scalar52 with arithmetic modulo L = 2252 + 27742317777372353535851937790883648493.
1 It is equal to 8 · L = 8 · (2252 + 27742317777372353535851937790883648493).
2 For example, https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.

html.

Ref.: 19-06-594-REP Quarkslab SAS 14

https://doc.dalek.rs/curve25519_dalek/edwards/index.html
https://doc.dalek.rs/curve25519_dalek/ristretto/index.html
https://doc.dalek.rs/curve25519_dalek/scalar/index.html
https://github.com/dalek-cryptography/curve25519-dalek/tree/45b316d26b64e8dc729b3463911a919cf31c6f4c/src/backend/serial/u64
https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html

Public

Some standard constants for elliptic curves are also defined. The two structures decompose
integers of 256 bits in 5 integers stored in u64 variables.

FieldElement51

In FieldElement51, the initial integer is split in 5 integers of 51 bits (The Most Significant Bit
of the big integers is always 0). The library attempts to decrease the latency of every operation
by allowing a non-canonical representation of integers in a given limit b, where x < 251+b, x
representing a 51 bit integer in the canonical representation.
The accepted limit of b for each method is mentioned as comments in the code and allows us
to validate its correctness. The subtraction does not overflow if b < 4 and the multiplication
with b < 3.365. Both of these operations call the reduce operation at the end to return a result
where b < 0.000000001.
However, the addition does not include any reduction operation. This allows the values to
overflow if additions are chained. The FieldElement51 structure is not public but is used in
EdwardsPoint. We did not find during the audit a suitable operation on a EdwardsPoint that
can lead to an overflow of a FieldElement51.

Scalar52

For Scalar52, the integer is split in 4 integers of 52 bits and one of 48 bits. Some arithmetical
operations on Scalar52 are only valid with a canonical integer representation modulo L. To
avoid underflows in the result, the subtraction adds L to the result if it’s negative to prevent
underflow. The addition performs a subtraction by L on the result to keep the sum of two
canonical integers in a canonical form. For these additions and subtractions, if a number in a
non-canonical form is passed, the result may overflow the integer representation (4 integers of
52 bits and 1 of 48 bits) and the method to_bytes will fail to reconstruct a valid number.
Some multiplications and reductions are present in this object. The code review performed on
these methods has revealed no issue.

5.1.2 avx2 back-end

The avx2 back-end is used to enable the support of SIMD instructions. This back-end will be
used to compute multi-scalar multiplications.
The avx2 back-end is used to create a FieldElement2625x4. It is built with four FieldElement51
coordinates that are present in an EdwardsPoint. The initial value is split into 40 integers of 32
bits, each with 25 or 26 bits of the value. So, the value can be stored in a non-canonical form but
limited by b. All operations have the pre- and post-conditions on b that are well documented to
limit overflow. The back-end also defines two structures ExtendedPoint and CachedPoint that
uses FieldElement2625x4.
During the audit, we reviewed the conditions on b and validated that overflow may occur if these
conditions were not fulfilled. We validated that all methods of ExtendedPoint and CachedPoint
correctly validated pre- and post-conditions of FieldElement2625x4. For ExtendedPoint, the
code will always keep b < 0.007 outside of the method. For CachedPoint, the post-conditions
indicate that the maximum value of b is 1. The CachedPoint includes a warning about repeatedly
negating a point. The precondition of the negation is not valid for the second negation but
the actual implementation returns the same representation after two negations (the test case
test_multiple_neg confirms this behavior).

Ref.: 19-06-594-REP Quarkslab SAS 15

Public

5.1.3 Curve Points

The library uses the previous back-end in the structures EdwardsPoint and RistrettoPoint that
represent respectively a valid point on the curve in the Edwards form and a point in the Ristretto
group. CompressedEdwardsY and CompressedRistretto are the compressed representations of
these points in a slice of 32 bytes. The decompress and compress methods allow switching
between the two representations. The decompress method returns an Option result that can be
None if the point is not valid. For the RistrettoPoint, this is in accordance with the specification
of the decoding algorithm of Ristretto.
The RistrettoPoint uses EdwardsPoint that uses the FieldElement51 structure to represent the
coordinates of the point. In the case of a multi-scalar multiplication, the avx2 back-end is used.

5.1.4 Serialization

The previous curve points and the Scalar type implement the Serialize and Deserialize traits
of serde to provide a way to serialize the structures. For CompressedEdwardsY and Com-
pressedRistretto, the serialization uses 32 bytes for a point. To avoid creating a non-valid point
during the decompression, the representation of EdwardsPoint and RistrettoPoint are the same
as their compressed forms. The decompress method is called to deserialize and returns an error
if the serialization is not a valid point.
For Scalar, the decompression validates that the number is in a canonical form. The overflow
in the Scalar52 cannot occur when deserializing a value.
To test the implementation, we tried to use serde-json but it fails to deserialize a valid seri-
alization. The expected format to deserialize is a string when the serializer gives an array of
integers. The Tari Labs informed us that they use rmp-serde. We fuzzed the implementation
with honggfuzz-rs and did not find any issue in the library. However, if rmp-serde is used, we
recommend patching the issue #151 to avoid that a malformed serial of five bytes allocates
more than 2 GB of memory.

5.1.5 Constant Time

The library has some methods in variable time. These methods can be easily identified by their
name that almost always begins with vartime. The code is linear (and may be expected to be
constant time) in other methods, especially in the implementation of arithmetical operations.
However, even without the #[inline] keyword, some methods are inlined inside the crate and
we did not validate that all the generated assembly is still linear.

5.2 Issues

The following issues were found in curve25519-dalek. The only issue that adds a real risk is the
overflow in Scalar52.

5.2.1 Overflow in Scalar52

The from_bits method in Scalar allows creating a Scalar52 in a non-canonical form. However,
the additions and subtractions in Scalar52 are only valid with a canonical form. The overflow
can be triggered by:

• creating a Scalar with from_bits that was greater than L and

Ref.: 19-06-594-REP Quarkslab SAS 16

https://ristretto.group/formulas/decoding.html
https://github.com/rust-fuzz/honggfuzz-rs
https://github.com/3Hren/msgpack-rust/issues/151

Public

• calling some addition, subtraction or negation.

During the addition, the value will be unpacked to a Scalar52. The overflow will occur in the
largest u64 when its value becomes larger than 248. This overflow is not detected by Rust
because the value does not go around the u64 limit. The Scalar::pack method and its call to
Scalar52::to_bytes will not verify that the 16 highest bits of the most significant u64 are all
null.
During the first part of the subtraction, the wrapping_sub method is used to allow the underflow
behavior. If the highest bit is set at the end, the method adds L to the result to return a
positive value. However, if the value is lower than -L, the result will be still negative and the
Scalar52::to_bytes will fail to detect the invalid state.
The following test triggers this issue with the addition and the negation:

#[test]
fn test_scalar_overflow() {

let tested = [
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,

];
let a = Scalar::from_bytes_mod_order(tested);
let b = Scalar::from_bits(tested);

assert_eq!(a, b.reduce());

let a_res = a + a + a;
let b_res = b + b + b;

assert_eq!(a_res.reduce(), b_res.reduce()); // fail

let neg_a = -a;
let neg_b = -b;

assert_eq!(neg_a.reduce(), neg_b.reduce()); // also fail
}

As the from_bits method is mandatory to implement x25519, we recommend adding a few
checks to validate that the Scalar created with this method cannot be added or subtracted
without being reduced. An assert can be added in Scalar52::to_bytes to verify that the 16
highest bits of the most significant u64 are null.

5.2.2 Optimizations

The following issues may be corrected as improvements. However, their correction is not required
for a secure usage of the library.

size_hint in multiscalar_mul and vartime_multiscalar_mul

The methods EdwardsPoint::multiscalar_mul and EdwardsPoint::vartime_multiscalar_mul use
size_hint to determine the length of their parameters. The documentation of the size_hint
method allows returning a range of values. However, the previous multiplication methods verify
that the result is a range with a single value. As the standard library returns the exact size, we

Ref.: 19-06-594-REP Quarkslab SAS 17

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.size_hint

Public

recommend specifying in the documentation that the size_hint method should return the exact
size if a custom iterator is used. The size can also be validated in the Strauss and Pippenger
algorithms, after the first map and collect calls on each iterator.

debug_assert too permissive in window.rs

In the file window.rs, the following code is used to access an index of NafLookupTable8 :

#[derive(Copy, Clone)]
pub(crate) struct NafLookupTable8<T>(pub(crate) [T; 64]);

impl<T: Copy> NafLookupTable8<T> {
pub fn select(&self, x: usize) -> T {

debug_assert_eq!(x & 1, 1);
debug_assert!(x < 256); // need to be < 128

self.0[x / 2]
}

}

The debug assert is too permissive and accepts values between 129 and 256 that are invalid
offsets. As Rust validates the index, the code will panic in debug or release mode.

5.3 Conclusion

The internal representation of integers can allow some overflows that will not be detected by
Rust in debug mode. During the audit, we found only one method that triggered an overflow
through the public API of the library. The library follows the guideline of subtle. Moreover,
except for methods marked as variable time, the code is linear and may be expected to be
constant-time, but we did not write specific tests to check this behaviour during this audit.
The point and scalar are always serialized in a compressed form, and the deserialization process
properly validates points and canonical forms when using scalars.

Ref.: 19-06-594-REP Quarkslab SAS 18

Public

6. The bulletproofs library

6.1 Purpose

Bulletproofs refer to non-interactive zero-knowledge (NIZK) proof protocol [Bul]. A bulletproof
is mainly used to allow a Prover to convince a Verifier that a given secret value lies in a given
range. In addition to an individual proof for each committed value, the protocol is also designed
to deal with aggregated rangeproofs, which are smaller than individual proofs concatenated, and
multi-party computation (MPC) to aggregate proofs of multiple parties.
The MPC feature of Bulletproofs is one of the main interests in the context of the Tari Labs.

6.2 Protocol

Note: The documentation of the bulletproofs library provides extensive notes about the
protocol and the computations performed during the protocol. Instead of rewriting all the
work in this report, we will use the notation introduced in the documentation and refer to the
corresponding parts of the documentation.

6.2.1 Build a proof

This part refers to the "Party and Dealer’s algorithm" section of https://doc-internal.
dalek.rs/bulletproofs/range_proof/index.html. When the source of a function is not docu-
mented here, functions referring to a party can be found in src/range_proof/party.rs, and
src/range_proof/dealer.rs for the dealer. Note that the pieces of code have sometimes been
modified for the needs of the presentation and are placed under the license MIT License Copy-
right (c) 2018 Chain, Inc.

Setup

The MPC protocol specifies how the parties involved in the construction of the proof must
interact with each other. First of all, the protocol describes a dealer (i.e., the Prover) which will
be responsible for building the aggregated proof from the inputs of the parties1. Note that the
security assumption of such an MPC protocol is secure against an honest-but-curious adversary,
also known as passive corruption security or semi-honest security. Such an adversary can be
described as not deviating from the protocol and attempting to obtain as much information as he
can from the transcript of the proof (that is all the data that a Verifier will need to be convinced
of the proof). Since such an assumption is often not verified in practice, the developers of
bulletproofs have integrated some mitigations against attacks coming from a malicious adversary.
We will discuss some of them during the description of the protocol. We consider a model in
which the communications between the dealer and a party cannot be crafted by another party,
which means that the communications are protected to ensure message integrity: confidentiality
is less important, since a cheating dealer would have all the contributions of the parties and
must not be able to recover the secrets. In addition, we consider that the dealer cannot require
more data from a party without restarting the protocol from scratch.

1 The dealer may be one of the parties.

Ref.: 19-06-594-REP Quarkslab SAS 19

https://doc.dalek.rs/bulletproofs/
https://doc-internal.dalek.rs/bulletproofs/range_proof/index.html
https://doc-internal.dalek.rs/bulletproofs/range_proof/index.html
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/party.rs
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/dealer.rs

Public

The Bulletproofs paper states in Section 4.5 that two MPC protocols are available. The de-
velopers of the bulletproofs library chose to implement one of them: the one with a constant
number of rounds, independent of the number of parties. Note that the number m of parties
must be a power of 2 in the implementation. However the authors of the paper indicate that "the
protocol could be easily adapted for other values of m". To begin the protocol, each participant
(i.e., the parties and the dealer) must agree on:

• the number of participants m and
• the range [0, 2n) in which the secret values must lie, where n must be equal to one the

following values: 8, 16, 32 or 64.

In addition, each party has a secret value, which will be named v(j), and a secret random scalar,
which will be named ṽ(j), a blinding value. With such setup, the protocol can begin, following
the scheme summarized in Fig. 6.1. The random scalar is chosen using any cryptographically
secure pseudorandom number generator, which must implement the functions of the traits
rand_core::CryptoRng and rand_core::RngCore.

let mut rng = rand::thread_rng(); let v0_blinding = Scalar::random(&mut rng);

Fig. 6.1: Exchanges between the dealer and a party (Copyright (c) 2018 Chain, Inc., https:
//doc-internal.dalek.rs/bulletproofs/range_proof_mpc/index.html).

An example of code to run the protocol on a single machine with a fake exchange can be found in
the detect_dishonest_party_during_aggregation function of the file src/range_proof/mod.rs.
We quote it here with fewer parties than in the original test and without the dishonesty feature.

// Setup
let m = 2; let n = 32;

let pc_gens = PedersenGens::default(); let bp_gens = BulletproofGens::new(n, m);

let mut rng = rand::thread_rng();
let mut transcript = Transcript::new(b"AggregatedRangeProofTest");

let v0 = rng.gen::<u32>() as u64; let v0_blinding = Scalar::random(&mut rng);
(continues on next page)

Ref.: 19-06-594-REP Quarkslab SAS 20

https://doc-internal.dalek.rs/bulletproofs/range_proof_mpc/index.html
https://doc-internal.dalek.rs/bulletproofs/range_proof_mpc/index.html
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/mod.rs#L620
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/mod.rs

Public

(continued from previous page)
let party0 = Party::new(&bp_gens, &pc_gens, v0, v0_blinding, n).unwrap();

let v1 = rng.gen::<u32>() as u64; let v1_blinding = Scalar::random(&mut rng);
let party1 = Party::new(&bp_gens, &pc_gens, v1, v1_blinding, n).unwrap();

let dealer = dealer::new(&bp_gens, &pc_gens, &mut transcript, n, m).unwrap();

// Position
let (party0, bit_com0) = party0.assign_position(0).unwrap();
let (party1, bit_com1) = party1.assign_position(1).unwrap();

// Generation of the y and z challenges
let bit_commitments = vec![bit_com0, bit_com1];
let (dealer, bit_challenge) = dealer

.receive_bit_commitments(bit_commitments).unwrap();

// Evaluation with the y and z challenges
let (party0, poly_com0) = party0.apply_challenge(&bit_challenge);
let (party1, poly_com1) = party1.apply_challenge(&bit_challenge);

// Generation of the x challenge
let poly_commitments = vec![poly_com0, poly_com1];
let (dealer, poly_challenge) = dealer

.receive_poly_commitments(poly_commitments).unwrap();

// Evaluation with the x challenge
let share0 = party0.apply_challenge(&poly_challenge).unwrap();
let share1 = party1.apply_challenge(&poly_challenge).unwrap();

// Aggregation of the proofs
dealer.receive_shares(&[share0, share1]);

Each party and the dealer create two generators B and B̃. These two generators must be
generated in the same way for the parties and the dealer, it is sufficient that the discrete
logarithm of B̃ in basis B is unknown. Since Ristretto is a group of prime order, each element
of the group is a generator of the group (or is zero), as defined in src/generators.rs.

Note: Using the default paramaters, these generators are always the same for each Bulletproofs
protocol instantiation. The generator B̃ is generated in a nothing-up-my-sleeve way using the
SHA3-512 function of B expressed in bytes and converted into a Ristretto point, as shown in
the following piece of code. However, since these two values are public, they can be set to any
other values by using the standard API: in such a case, we recommand to carefully select B
and B̃ with respect to the properties listed previously.

#[derive(Copy, Clone)]
pub struct PedersenGens {

/// Base for the committed value
pub B: RistrettoPoint,
/// Base for the blinding factor
pub B_blinding: RistrettoPoint,

}

impl Default for PedersenGens {
(continues on next page)

Ref.: 19-06-594-REP Quarkslab SAS 21

https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/generators.rs

Public

(continued from previous page)
fn default() -> Self {

PedersenGens {
B: RISTRETTO_BASEPOINT_POINT,
B_blinding: RistrettoPoint::hash_from_bytes::<Sha3_512>(

RISTRETTO_BASEPOINT_COMPRESSED.as_bytes(),
),

}
}

}

The n ·m Bulletproofs generators are sampled in a reproducible way, in order for the parties to
generate the same Bulletproof generators. The BulletproofGens structure is a vector of vectors
of RistrettoPoint, generated with the SHAKE256 sponge construction used in GeneratorsChain.

pub fn new(gens_capacity: usize, party_capacity: usize) -> Self {
use byteorder::{ByteOrder, LittleEndian};

BulletproofGens {
gens_capacity,
party_capacity,
G_vec: (0..party_capacity)

.map(|i| {
let party_index = i as u32;
let mut label = [b'G', 0, 0, 0, 0];
LittleEndian::write_u32(&mut label[1..5], party_index);

GeneratorsChain::new(&label)
.take(gens_capacity)
.collect::<Vec<_>>()

})
.collect(),

H_vec: (0..party_capacity)
.map(|i| {

let party_index = i as u32;
let mut label = [b'H', 0, 0, 0, 0];
LittleEndian::write_u32(&mut label[1..5], party_index);

GeneratorsChain::new(&label)
.take(gens_capacity)
.collect::<Vec<_>>()

})
.collect(),

}
}

Note: The code to generate G_vec and H_vec is highly similar and appears to be duplicated
code.

Position

During the first exchange between the dealer and a party, the dealer will send a number j in
the interval [0, m). A cheating dealer may want to assign for some party the same value j, or
a party may not want to follow the index assigned by the dealer. In such a case, the building

Ref.: 19-06-594-REP Quarkslab SAS 22

Public

proof will be rejected2, but we do not know if it is possible for an honest dealer or Verifier to
detect which party does not follow the protocol.
In addition, we cannot be certain in such a case if someone having access to the transcript may
extract information about the secret value of a party.
Once the parties have received their own position j, each party must compute the values V(j),
A(j) and S(j). As in the setup step, the thread_rng function is used to randomly generate the
blinding factors ã(j) and s̃(j) used to compute the Pedersen commitments of a(j) and s(j).

let a_blinding = Scalar::random(&mut rng);
...
let s_blinding = Scalar::random(&mut rng);

Since the computation of A(j) uses the secret v(j), the implementation tries to be constant time
(it looks like statically, be we cannot ensure that it keeps the same behavior dynamically). It
uses the fact that the contribution of the generator at index i of G(j) and the generator at index
i of H(j) cannot appear at the same time.

let mut i = 0;
for (G_i, H_i) in bp_share.G(self.n).zip(bp_share.H(self.n)) {

// If v_i = 0, we add a_L[i] * G[i] + a_R[i] * H[i] = - H[i]
// If v_i = 1, we add a_L[i] * G[i] + a_R[i] * H[i] = G[i]
let v_i = Choice::from(((self.v >> i) & 1) as u8);
let mut point = -H_i;
point.conditional_assign(G_i, v_i);
A += point;
i += 1;

}

The computation of S(j) needs to generate 2n random scalars split into two vectors of n scalars
sL,(j) and sR,(j).

let s_L: Vec<Scalar> = (0..self.n).map(|_| Scalar::random(&mut rng)).collect();
let s_R: Vec<Scalar> = (0..self.n).map(|_| Scalar::random(&mut rng)).collect();

Then, the multiscalar_mul operation is applied to:
• a vector v0 (notation introduced in this document) of 2n+1 scalars which aggregates s̃(j),

all the elements of sL,(j) and sR,(j) and
• a vector v1 (notation introduced in this document) of 2n + 1 RistrettoPoint which aggre-

gates B̃, all the elements of G(j) and H(j).

let v0 = iter::once(&s_blinding).chain(s_L.iter()).chain(s_R.iter());
let v1 = iter::once(&self.pc_gens.B_blinding).chain(bp_share.G(self.n))

.chain(bp_share.H(self.n));

// Computation of S_j
let S = RistrettoPoint::multiscalar_mul(v0, v1);

The multiscalar_mul function must be constant time, but we did not have enough time to
verify it. This function uses as a back-end the EdwardPoint::multiscalar_mul which uses
itself scalar_mul::straus::Straus::multiscalar_mul. The last function is documented as being
"Constant-time Straus using a fixed window of size 4".

2 We have tested 210 times a modification of the detect_dishonest_party_during_aggregation function to test
different bad apportionment and the proof was always rejected.

Ref.: 19-06-594-REP Quarkslab SAS 23

Public

A BitCommitment object is composed of V(j), A(j) and S(j).
If a party lies at least on one of these values, the proof must not be verified.

Generation of the y and z challenges

Once all the parties have sent their BitCommitment, the dealer must put the BitCommitment
in order for a vector to be able to fully execute the receive_bit_commitments function.
At this point of the protocol, it is useful to describe what a Transcript is. The Transcript
structure is defined inside the merlin crate. However, the implementation of the dealer inside
bulletproofs uses almost only wrapper functions defined in src/transcript.rs except for the clone
function, and mainly two functions which are append_point and challenge_scalar. In addition
to writing the point in the transcript with append_point, the function modifies the internal
state of a hash function used as a pseudo-random function. The challenge_scalar function uses
the challenge_bytes function of merlin::transcript::Transcript itself using the prf function of
merlin::strobe::Strobe128. Auditing this scalar generation was out of the scope of the audit, but
it uses state-of-the-art algorithms, as the Keccak one which has given the standardized SHA-3
hash function3.
To generate the y and z challenges, the dealer adds:

• each individual V(j);

• the sum A =
∑m−1

j=0 A(j) and

• the sum S =
∑m−1

j=0 S(j).

Even if the section 4.4 of [Bul] does not explicitly use the V(j), we don’t have any objection
to use them as random sources of entropy. Then, instead of generating y = H(A, S), we
have y = H({V(j)}j∈[0,m), A, S). In addition, even if y is not added to the transcript4, since
extracting y from the construction of the hash function will modify the internal state of the
sponge construction of the hash function, we have z = H({V(j)}j∈[0,m), A, S, y).
All the following steps are implemented in the receive_bit_commitments function as

// Commit each V_j individually
for vc in bit_commitments.iter() {

self.transcript.append_point(b"V", &vc.V_j);
}

// Commit aggregated A_j, S_j
let A: RistrettoPoint = bit_commitments.iter().map(|vc| vc.A_j).sum();
self.transcript.append_point(b"A", &A.compress());

let S: RistrettoPoint = bit_commitments.iter().map(|vc| vc.S_j).sum();
self.transcript.append_point(b"S", &S.compress());

let y = self.transcript.challenge_scalar(b"y");
let z = self.transcript.challenge_scalar(b"z");
let bit_challenge = BitChallenge { y, z };

3 More details can be found at https://keccak.team/.
4 It is useless, since regenerating y (and z) can be done by anybody with A, S and V(j).

Ref.: 19-06-594-REP Quarkslab SAS 24

https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/dealer.rs#L87
https://crates.io/crates/merlin
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/transcript.rs
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/dealer.rs#L87
https://keccak.team/

Public

Evaluation with the y and z challenges

The dealer now sends the same BitChallenge to each of the parties. A dishonest dealer may
want to:

• send different pairs of challenges to different parties;
• send specific values of y and z.

Sending different challenges will lead to a rejected proof. If we did not have time to check if
this may however leak information about the secret, we do not see any trivial scenario which
can exploit such an attack. Choosing specific y and z seems to be more dangerous, as we show
in the following configuration.
If y = 0:

• r1,(j) = (sR,(j)[0], 0, 0, . . . , 0).5

If z = 0:
• l0,(j) = aL,(j).
• r0,(j) = yn

(j) ◦ aR,(j) which becomes r0,(j) = (aR,(j)[0], 0, 0, . . . , 0) if y = 0.

These values are not directly exposed since:
• they are used to compute t0,(j), t1,(j) and t2,(j) and
• the values t1,(j) and t2,(j) are hidden in the T1 and T2 Pedersen commitments.

One or both of these configurations lead to commit values that only use parts of the secrets. In
addition, it is highly improbable to have zero as a random value6. We may then suppose that
the dealer is a cheating dealer and stop the protocol of the MPC computation. However, and
according to Issue #87,

T1 and T2 [...] are blinded independently from any dealer messages and therefore
can’t leak information.

It is therefore safe to continue the protocol, even with one or both challenges equal to zero.
The computation performed by a party begins by computing each coefficient of the degree one
polynomial stacked into l(j)(x) and r(j)(x).

let zz = vc.z * vc.z;
let mut exp_y = offset_y;
let mut exp_2 = Scalar::one();
for i in 0..n {

let a_L_i = Scalar::from((self.v >> i) & 1);
let a_R_i = a_L_i - Scalar::one();

l_poly.0[i] = a_L_i - vc.z;
l_poly.1[i] = self.s_L[i];
r_poly.0[i] = exp_y * (a_R_i + vc.z) + zz * offset_z * exp_2;
r_poly.1[i] = exp_y * self.s_R[i];

exp_y *= vc.y; // y^i -> y^(i+1)
exp_2 = exp_2 + exp_2; // 2^i -> 2^(i+1)

}

5 The notation a[0] is for the first element of the vector a.
6 It appears only 1/(2252 + 27742317777372353535851937790883648493) time from a uniform distribution.

Ref.: 19-06-594-REP Quarkslab SAS 25

https://github.com/dalek-cryptography/bulletproofs/pull/87

Public

Then, t(j)(x) is computed by the function inner_product which implements the described Karat-
subas method to perform it. Once the coefficient of degree one, t1,(j), and the coefficient of degree
two, t2,(j), are computed, the party has to generate two blinding factors to compute the Peder-
sen commitments of these two coefficients. The two commitments T1,(j) and T2,(j) are packed
into PolyCommitment.

let t_poly = l_poly.inner_product(&r_poly);

let t_1_blinding = Scalar::random(&mut rng);
let t_2_blinding = Scalar::random(&mut rng);
let T_1 = self.pc_gens.commit(t_poly.1, t_1_blinding);
let T_2 = self.pc_gens.commit(t_poly.2, t_2_blinding);

let poly_commitment = PolyCommitment {
T_1_j: T_1,
T_2_j: T_2,

};

Generation of the x challenge

As for the aggregation of the contributions of the parties to compute S and A to compute the
y and z challenges, the dealer aggregates the elements of the PolyCommitment in the order of
their index. Then, the dealer computes T1 (respectively T2) as the sum of all the contributions
of all the T1,(j) (respectively T2,(j)).

let T_1: RistrettoPoint = poly_commitments.iter().map(|pc| pc.T_1_j).sum();
let T_2: RistrettoPoint = poly_commitments.iter().map(|pc| pc.T_2_j).sum();

These two values are added to the transcript. A cheating party may commit some crafted data
in order to get information about the secret values from the transcript, but we do not know if
it is possible. From the transcript, the dealer gets a random scalar x in the same way as we got
y and z.

self.transcript.append_point(b"T_1", &T_1.compress());
self.transcript.append_point(b"T_2", &T_2.compress());

let x = self.transcript.challenge_scalar(b"x");
let poly_challenge = PolyChallenge { x };

Evaluation with the x challenge

With the x challenge, each party must evaluate the vectors of polynomials l(j), l(j) and the
polynomial t(j). If x is equal to zero, the evaluation will result in removing the contribution of
the blinding factors in the rest of the computations. This is why the authors of the library raise
an error in such a case.

if pc.x == Scalar::zero() {
return Err(MPCError::Maliciousdealer);

}

First of all, the party computes a blinding factor t̃(j)(x) = z2z(j)ṽ(j) + xt̃1,(j) + x2t̃2,(j). Note
that in the documentation, the factor z(j) is forgotten.

Ref.: 19-06-594-REP Quarkslab SAS 26

Public

let t_blinding_poly = util::Poly2(
self.z * self.z * self.offset_z * self.v_blinding,
self.t_1_blinding,
self.t_2_blinding,

);

Then, the (vectors of) polynomials t(j)(x), t̃(j)(x), l(j)(x) and l(j)(x) are evaluated with the
x value sent by the dealer. With ã(j) and s̃(j) randomly selected during the beginning of the
protocol by each party, the last polynomial ẽ(j)(x) = ã(j) + xs̃(j) is evaluated.

let t_x = self.t_poly.eval(pc.x);
let t_x_blinding = t_blinding_poly.eval(pc.x);
let e_blinding = self.a_blinding + self.s_blinding * &pc.x;
let l_vec = self.l_poly.eval(pc.x);
let r_vec = self.r_poly.eval(pc.x);

A ProofShare, the aggregation of all these evaluations, is then sent to the dealer. It is the last
communication between the parties and the dealer.

Aggregation of the proofs

Setup

As usual, the dealer must aggregate the ProofShare of the parties in the order of their index.
First of all, the dealer computes t(x), t̃(x) and ẽ by adding the contribution of each party. These
three values are added to the transcript, which allows in particular to obtain a challenge scalar
w, used only by the dealer to create Q = w ·B which will be used for the inner product proof.

let t_x: Scalar = proof_shares.iter().map(|ps| ps.t_x).sum();
let t_x_blinding: Scalar = proof_shares.iter().map(|ps| ps.t_x_blinding).sum();
let e_blinding: Scalar = proof_shares.iter().map(|ps| ps.e_blinding).sum();

self.transcript.append_scalar(b"t_x", &t_x);
self.transcript

.append_scalar(b"t_x_blinding", &t_x_blinding);
self.transcript.append_scalar(b"e_blinding", &e_blinding);

// Get a challenge value to combine statements for the IPP
let w = self.transcript.challenge_scalar(b"w");
let Q = w * self.pc_gens.B;

The last step of the setup is the definition of an n · m vector H′. An entry i of H′ is equal
to y−i ·Hi. The concatenation of the l(j)(x) (respectively r(j)(x)) contribution is computed as
follows:

let Hprime_factors: Vec<Scalar> = util::exp_iter(self.bit_challenge.y.invert())
.take(self.n * self.m)
.collect();

let l_vec: Vec<Scalar> = proof_shares
.iter()
.flat_map(|ps| ps.l_vec.clone().into_iter())
.collect();

Ref.: 19-06-594-REP Quarkslab SAS 27

Public

Inner product proof

The part of the documentation for this step can be found at https://doc.dalek.rs/bulletproofs/
inner_product_proof/index.html, the code can be found at src/inner_product_proof.rs. To
be performed, the computation needs the following input:

• the transcript maintained by the dealer;
• Q;
• H′;
• G;
• H;
• l and
• r.

Note that in the documentation, the H′ vector is not used since its use is only for performance
reasons and that the vectors l and r are named a and b. For clarity, we will follow the notation
used in the documentation and implementation of the inner product proof.

Note: For this section, n is the size of the vectors, i.e., n ·m in the previous notation. This is
to match the documentation and the code.

The algorithm must be run in log2(n) rounds. Since there is a check that n is a power of two,
the use of the function next_power_of_two is unneeded.

assert!(n.is_power_of_two());
let lg_n = n.next_power_of_two().trailing_zeros() as usize; ///
n.trailing_zeros()

At each step j, the length of the vectors for the computation is divided by two. The vectors
are then split into two equal parts.

n = n / 2;
let (a_L, a_R) = a.split_at_mut(n);

The computation of Lj is performed by the vartime_multiscalar_mul method with two vectors
that pack:

• for v0, the lowest half part (left part) of a, the highest half part (right part) of b and the
inner product cL between the lowest half (left part) of a and the highest half (right part)
of b and

• for v1, the lowest half part (left part) of G, the highest half part (right part) of b and the
point Q.

let c_L = inner_product(&a_L, &b_R);
let v0 = a_L.iter().chain(b_R.iter()).chain(iter::once(&c_L));
let v1 = G_R.iter().chain(H_L.iter()).chain(iter::once(Q));
let L = RistrettoPoint::vartime_multiscalar_mul(v0, v1).compress();

The computation of Rj looks highly similar to the computation of Lj .

Ref.: 19-06-594-REP Quarkslab SAS 28

https://doc.dalek.rs/bulletproofs/inner_product_proof/index.html
https://doc.dalek.rs/bulletproofs/inner_product_proof/index.html
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/inner_product_proof.rs

Public

let c_L = inner_product(&a_R, &b_L);
let v0 = a_R.iter().chain(b_L.iter()).chain(iter::once(&c_R));
let v1 = G_L.iter().chain(H_R.iter()).chain(iter::once(Q));
let R = RistrettoPoint::vartime_multiscalar_mul(v0, v1).compress

The two CompressedRistretto are added to the transcript, which allows the dealer to get a
random scalar u. This scalar is used to compute the coordinates of the vectors a, b, H and G
for the next round of computations.
For i in [0, n):

• a[i]← u · alo[i] + u−1 · ahi[i]
• b[i]← u−1 · blo[i] + u · bhi[i]
• G[i]← u−1 ·Glo[i] + u ·Ghi[i]
• H[i]← u ·Hlo[i] + u−1 ·Hhi[i]

transcript.append_point(b"L", &L);
transcript.append_point(b"R", &R);

let u = transcript.challenge_scalar(b"u");
let u_inv = u.invert();

for i in 0..n {
a_L[i] = a_L[i] * u + u_inv * a_R[i];
b_L[i] = b_L[i] * u_inv + u * b_R[i];
G_L[i] = RistrettoPoint::vartime_multiscalar_mul(&[u_inv, u], &[G_L[i], G_R[i]]);
H_L[i] = RistrettoPoint::vartime_multiscalar_mul(&[u, u_inv], &[H_L[i], H_R[i]]);

}

a = a_L; b = b_L; G = G_L; H = H_L;

At the end of the last round, the proof is constructed by aggregating:
• all the intermediate values of Lj ;
• all the intermediate values of Rj ;
• the value of a0 and
• the value of b0.

Range proof

The proof sent by the dealer to the Verifier is then composed of the inner product proof, and
the scalars:

• t(x)
• t̃(x)
• ẽ

The proof is also composed of the CompressedRistretto:
• A

• S

Ref.: 19-06-594-REP Quarkslab SAS 29

Public

• T1

• T2

6.2.2 Verify a proof

An example to verify a proof can be found in src/range_proof/mod.rs in the verify_multiple
function. This method can be used by the dealer to verify that the proof is well formed before
sending it to the Verifier.
To verify a proof, the Verifier needs as inputs:

• the transcript provided by the dealer;
• the m commitments V(j) and
• the n parameter.

Note: Even if the V(j) values are added (one by one) to the transcript, they are always
overwritten by each other. This leads to the fact that we cannot keep track of all the values of
the V(j).

In order for the Verifier to find the same pseudo-random values (x, y and z) as those obtained
by the dealer, the Verifier must create a transcript exactly in the same way as the one followed
by the dealer.
To generate x, the Verifier adds to the transcript each V(j) and takes the A and S values from
the transcript provided by the dealer. Before continuing the verification of the proof, the Verifier
checks if A and S are not the identity point. The Verifier can then extract the two challenges
y and z, which must be the same as the one obtained by an honest dealer.

for V in value_commitments.iter() {
transcript.append_point(b"V", V);

}

transcript.validate_and_append_point(b"A", &self.A)?;
transcript.validate_and_append_point(b"S", &self.S)?;

let y = transcript.challenge_scalar(b"y");
let z = transcript.challenge_scalar(b"z");

The same mechanism is used to extract x, by adding the Ristretto points T1 and T2 from the
transcript of the dealer to the transcript of the Verifier. Same operations on w, with t(x), t̃(x)
and ẽ(x).
Then, the Verifier needs to generate the scalars u1 to uk and s0 to sn−1. This is achieved
with the verification_scalars method implemented in src/inner_product_proof.rs. Since the
Verifier needs to have the square of all the ui and their inverse, the function returns
{u2

1, u2
2, . . . , u2

k, u−2
1 , u−2

2 , . . . , u−2
k , s0, s1, . . . , sn−1}.

The Verifier also needs a random scalar c, which comes from another source of entropy than
the one of the transcript, and the scalars a and b of the inner product proof.

Ref.: 19-06-594-REP Quarkslab SAS 30

https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/mod.rs

Public

let c = Scalar::random(&mut rng);
let a = self.ipp_proof.a;
let b = self.ipp_proof.b;

Once all these steps are performed, the Verifier must compute the right-
hand side of the large equation given in the Verifier’s algorithm <https://doc-
internal.dalek.rs/bulletproofs/range_proof/index.html#verifiers-algorithm> section of
the documentation. This large computation is computed thanks to the Ristretto-
Point::optional_multiscalar_mul method with two large vectors that aggregate the scalars and
the RistrettoPoint that are used. This mega_check does not follow the same order as the one
from the addition chain. We present in the following piece of code the sequence given in the
documentation.

let mega_check = RistrettoPoint::optional_multiscalar_mul(
iter::once(Scalar::one()) // 1

.chain(iter::once(x)) // x

.chain(value_commitment_scalars), // cz^(i+2)

.chain(iter::once(c * x)) // c * x

.chain(iter::once(c * x * x)) // c * x^2

.chain(iter::once(basepoint_scalar)) // w * (self.t_x - a * b) + c * (delta(n,
↪→ m, &y, &z) - self.t_x)

.chain(iter::once(-self.e_blinding - c * self.t_x_blinding)) // -tilde(e) - c␣
↪→* tilde(t)(x)

.chain(g) // -z - a * s_i

.chain(h) // z + y^i * z^2 * ? - b * s_i^(-1)

.chain(x_sq.iter().cloned()) // u_i^2

.chain(x_inv_sq.iter().cloned()) // u_i^(-2)
iter::once(self.A.decompress()) // A

.chain(iter::once(self.S.decompress())) // S

.chain(value_commitments.iter().map(|V| V.decompress())), // V_j

.chain(iter::once(self.T_1.decompress())) // T_1

.chain(iter::once(self.T_2.decompress())) // T_2

.chain(iter::once(Some(pc_gens.B))) // B

.chain(iter::once(Some(pc_gens.B_blinding))) // tilde(B)

.chain(bp_gens.G(n, m).map(|&x| Some(x))) // G

.chain(bp_gens.H(n, m).map(|&x| Some(x))) // H

.chain(self.ipp_proof.L_vec.iter().map(|L| L.decompress())) // L

.chain(self.ipp_proof.R_vec.iter().map(|R| R.decompress())) // R
)

6.3 Code review

In addition to the protocol implementation review, we also audited the code to validate the
protections implemented in the library to prevent an attack on the protocol.

6.3.1 State machine

Each state of the party and the dealer is implemented in a separate structure:
• DealerAwaitingBitCommitments
• DealerAwaitingPolyCommitments
• DealerAwaitingProofShares

Ref.: 19-06-594-REP Quarkslab SAS 31

https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/dealer.rs#L74
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/dealer.rs#L131
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/dealer.rs#L192

Public

• PartyAwaitingPosition
• PartyAwaitingBitChallenge
• PartyAwaitingPolyChallenge

To assert that the state machine is correctly followed and that a used state cannot be reused,
the method that computes the next step takes the ownership on the current state. In Rust,
when a method takes the ownership of an object, this object cannot be reused afterwards. The
only exception is if the state implements the traits Clone or Copy, but this is not the case here.
In addition, we tried to implement these traits in a dependent library but the rust error E0117
prevents to implement a foreign trait on a foreign structure without using a local structure.
Finally, the internal value of each state is private, which disallows a legit dependent library to
use the state outside of the state machine.
The library cannot prevent an attacker to run a new proof computation as a party. This attack
must be prevented by the dependent libraries. In the same way, a dependent library must not
try to bypass the previous behavior (e.g., with the help of unsafe statements).

6.3.2 Message serialization

The library implements the Serialize and Deserialize traits on the messages exchanged be-
tween the parties and the dealer in src/range_proof/messages.rs and on the final proof in
srcrange_proof/mod.rs.
Messages and proofs contain some structures of curve25519-dalek that we already fuzzed in
the previous part (see Section 5.1.4). For the bulletproofs library, we fuzzed each message with
the next operation. The proof was fuzzed with the verify_multiple method that was used to
validate the proof. The goal was to assert that an attacker that sends a malicious package will
only get a false proof or an error.
During the fuzzing of ProofShare, the library panicked in some cases when the length of l_vec
and r_vec were not the expected ones. As opposed to the proof, the serializer is not customized
and does not check the length of vectors. All vectors of all parties are concatenated before
computing the inner product. In the beginning of InnerProductProof::create, the length is
validated with assert_eq and causes a panic. In addition, two colluding parties can change the
length of their vectors in such a way that the agglomerated vector has the right length. We
recommend validating the length of each party’s vector in the dealer and return an error if one
of them has not the expected length.

6.3.3 Constant Time

At some points, the library uses variable time methods with branches. However, we did not find
any usage of these methods with the secrets v and v_blinding. These secrets use the constant
time methods of subtle and curve25519-dalek and no if statement is used on these values. We
did not analyze all generated assembly code to assert that there is no optimization branch. As
a consequence, the constant time property is only based on code linearity.
As the computations of bulletproofs include some variable time computation on public values,
and the duration of the computation is too long to avoid OS interruptions, we cannot conclude
about real constant time in the bulletproofs library. However, if the protocol was strictly im-
plemented, a remote attacker who wants to use a timing attack to leak a secret value (i.e. v
or vblinding) can only use the timing on the message. We conclude that a timing attack on
bulletproofs for a remote attacker (which can be another party or the dealer) has a low risk to

Ref.: 19-06-594-REP Quarkslab SAS 32

https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/party.rs#L59
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/party.rs#L143
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/party.rs#L242
https://doc.rust-lang.org/error-index.html#E0117
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/messages.rs
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/mod.rs
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/inner_product_proof.rs#L35

Public

success if the protocol is followed and not replayed.

6.4 Issues

In bulletproofs, the only real issue was in the ProofShare serial which was not completely checked
and can force a legit dealer to panic.

6.4.1 ProofShare panic

A malicious party can send a ProofShare that will make the dealer panic. The consequence of
this panic will depend on the dependent libraries. This issue was only valid if a party cannot
be trusted and can send arbitrary serialized messages.
The serializer used for this purpose has no impact on this vulnerability. If we use rmp-serde,
the following valid serial of ProofShare can be used to trigger this issue :

let proofshare_raw = [149, 196, 32, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 196, 32, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 196, 32, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 144,
144];

To avoid this problem, the length of each ProofShare vector must be independently val-
idated with the length of G in DealerAwaitingProofShares::assemble_shares and Proof-
Share::audit_share before using the provided values.

6.4.2 Optimizations and recommendations

size_hint on AggregatedGensIter

The size_hint method of AggregatedGensIter does not respect its definition in the documenta-
tion of the trait Iterator. This method must return the remaining length of the iterator whereas
the current implementation returns the original length.

#[test]
fn custom_test() {

let gens = BulletproofGens::new(64, 8);
let mut G_iter = gens.G(64, 8);
assert_eq!(G_iter.size_hint().0, 512);

G_iter.next().unwrap();
assert_eq!(G_iter.size_hint().0, 511); // fail

}

The implementation should be corrected by:

Ref.: 19-06-594-REP Quarkslab SAS 33

https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/dealer.rs#L215
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/messages.rs#L54
https://github.com/dalek-cryptography/bulletproofs/blob/6a17ceb3bf3ce9b94cfa16a2a1a7311eef2dc6e7/src/range_proof/messages.rs#L54
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.size_hint

Public

fn size_hint(&self) -> (usize, Option<usize>) {
let size = self.n * (self.m - self.party_idx) - self.gen_idx;
(size, Some(size))

}

Reusing computations

In the PartyAwaitingBitChallenge::apply_challenge implementation, it is also possible to reuse
a part of the computations. Indeed, since z(j) does not change during the loop, it is possible to
precompute z2 · z(j).

- let zz = vc.z * vc.z;
+ let offset_zz = vc.z * vc.z * offset_z;
let mut exp_y = offset_y;
let mut exp_2 = Scalar::one();
for i in 0..n {

let a_L_i = Scalar::from((self.v >> i) & 1);
let a_R_i = a_L_i - Scalar::one();

l_poly.0[i] = a_L_i - vc.z;
l_poly.1[i] = self.s_L[i];

- r_poly.0[i] = exp_y * (a_R_i + vc.z) + zz * offset_z * exp_2;
+ r_poly.0[i] = exp_y * (a_R_i + vc.z) + offset_zz * exp_2;

r_poly.1[i] = exp_y * self.s_R[i];

exp_y *= vc.y; // y^i -> y^(i+1)
exp_2 = exp_2 + exp_2; // 2^i -> 2^(i+1)

}

This can also be used to create a PartyAwaitingPolyChallenge, since its method uses only the
result of z2 · z(j).

Usage of rmp-serde

During the audit, we used rmp-serde as the serializer to fuzz some structures. We have locally
patched the issue #151 to fuzz the code efficiently. This piece of code allocates the buffer by
pages of 4096 bytes, and can return the UnexpectedEof error of the Read.read_exact method
without allocating the full buffer length.

diff --git a/rmp-serde/src/decode.rs b/rmp-serde/src/decode.rs
index ab20c78..6310e9f 100644
--- a/rmp-serde/src/decode.rs
+++ b/rmp-serde/src/decode.rs
@@ -570,8 +570,14 @@ impl<R: Read> ReadReader<R> {
impl<'de, R: Read> ReadSlice<'de> for ReadReader<R> {

#[inline]
fn read_slice<'a>(&'a mut self, len: usize) -> Result<Reference<'de, 'a, [u8]>,␣

↪→io::Error> {
+ let mut l = 4096;
+ while l < len {
+ self.buf.resize(l, 0u8);
+ self.rd.read_exact(&mut self.buf[(l-4096)..])?;
+ l += 4096;

(continues on next page)

Ref.: 19-06-594-REP Quarkslab SAS 34

https://github.com/3Hren/msgpack-rust/issues/151
https://doc.rust-lang.org/std/io/trait.Read.html#method.read_exact

Public

(continued from previous page)
+ }

self.buf.resize(len, 0u8);
- self.rd.read_exact(&mut self.buf[..])?;
+ self.rd.read_exact(&mut self.buf[(l-4096)..])?;

Ok(Reference::Copied(&self.buf[..]))
}

We recommend patching this issue to avoid a too big memory allocation, and possibly a crash
in memory-constrained environments.

6.5 Conclusion

We found no deviation from the original article introducing the protocol. The extensive notes
and documentation helped a lot to understand the choices made by the authors of the imple-
mentation. The usage of this library includes some protections regarding the protocol. However,
dependent libraries must implement some protections against the protocol replay and handle
bulletproofs errors.

Ref.: 19-06-594-REP Quarkslab SAS 35

Public

7. The x25519-dalek and ed25519-dalek libraries

7.1 The x25519-dalek library

7.1.1 Dependencies

This library relies on:
• clear_on_drop version ^0.2 : helpers for clearing sensitive data on the stack and heap.
• curve25519-dalek version ^1 : forced to be version 1.2.1.
• rand_core version ^0.3 : Rust library for random number generation.

Note that all these dependencies used 8 libraries as a back-end if compiled with:

$ RUSTFLAGS="-C target_feature=+avx2" cargo build --release

7.1.2 Public key validation

We report here a point of interest which is still a debate between cryptographers. This debate
can be summarized in the blog post [Aum]. Indeed, some values of a public key may blind the
contribution of a private one, leading to compute a shared secret equal to zero. These public keys
are well-known1. Following [GVY], the libsodium library with the has_small_order2 function
rejects a public key composed of these small-order points.
Alternatively or in addition to this test, and as specified in the RFC [ECS], it is also recom-
mended to check if the common secret computed by the function diffie_hellman is the all-zero
value: this check must be performed with a constant-time implementation, as provided by the
subtle library.
The following piece of code lists the seven public keys leading to a zero secret key.

// Cargo.toml piece of code
// [package]
// name = "test-x25519"
// version = "1.0.0"
// edition = "2018"
// [dependencies]
// curve25519-dalek = "1.2.1"
// x25519-dalek = "0.5.2"
// rand_os = "0.1"

use rand_os::OsRng;

use x25519_dalek::{PublicKey, EphemeralSecret};

fn main() {
let bob_public = [

PublicKey::from([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

(continues on next page)

1 https://cr.yp.to/ecdh.html#validate
2 https://github.com/jedisct1/libsodium/blob/61992a838df3db8a27443e089656fb1ac0bc1608/src/libsodium/

crypto_scalarmult/curve25519/ref10/x25519_ref10.c#L17

Ref.: 19-06-594-REP Quarkslab SAS 36

https://cr.yp.to/ecdh.html#validate
https://github.com/jedisct1/libsodium/blob/61992a838df3db8a27443e089656fb1ac0bc1608/src/libsodium/crypto_scalarmult/curve25519/ref10/x25519_ref10.c#L17
https://github.com/jedisct1/libsodium/blob/61992a838df3db8a27443e089656fb1ac0bc1608/src/libsodium/crypto_scalarmult/curve25519/ref10/x25519_ref10.c#L17

Public

(continued from previous page)
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,]),

PublicKey::from([0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,]),

PublicKey::from([0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae,
0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd,
0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00,]),

PublicKey::from([0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24,
0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b,
0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86,
0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57,]),

PublicKey::from([0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,]),

PublicKey::from([0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,]),

PublicKey::from([0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,]),

];

for x in 0..bob_public.len() {
let mut csprng = OsRng::new().unwrap();
let alice_secret = EphemeralSecret::new(&mut csprng);

let alice_shared_secret = alice_secret.diffie_hellman(&bob_public[x]);

assert_eq!(alice_shared_secret.as_bytes(), &[0; 32]);
}

}

Depending on the taxonomy and the purpose of the library, this non-validation may not be an
issue.

7.2 The ed25519-dalek library

7.2.1 Dependencies

This library relies on:
• clear_on_drop version ^0.2 : helpers for clearing sensitive data on the stack and heap.
• curve25519-dalek version ^1 : forced to be version 1.2.1.
• failure version ^0.1.1 : error management.
• rand version ^0.6 : a Rust library for random number generation.
• sha2 version ^0.8 : SHA-2 hash functions.

Ref.: 19-06-594-REP Quarkslab SAS 37

Public

• serde version ^1.0 (optional): serialization framework for Rust.

Note that all these dependencies use as a back-end 23 libraries if compiled with:

$ RUSTFLAGS="-C target_feature=+avx2" cargo build --release --no-default-features --
↪→features "std avx2_backend"

7.2.2 Notes on the usage

We highlight here a point that is acknowledged in the documentation of the project, in the
section A Note on Signature Malleability.

We could eliminate the malleability property by multiplying by the curve cofac-
tor, however, this would cause our implementation not to match the behavior of
every other implementation in existence. As of this writing, RFC 8032 [EdDSA],
"Edwards-Curve Digital Signature Algorithm (EdDSA)", advises that the stronger
check should be done. While we agree that the stronger check should be done, it is
our opinion that one shouldn’t get to change the definition of "ed25519 verification"
a decade after the fact, breaking compatibility with every other implementation.
In short, if malleable signatures are bad for your protocol, don’t use them. Con-
sider using a curve25519-based Verifiable Random Function (VRF), such as Trevor
Perrin’s VXEdDSA [Per], instead. We plan3 to eventually support VXEdDSA in
curve25519-dalek.

A discussion about the compatibility of the library with libsoduim is open inside the project4.
In order to mitigate issues coming from the malleability of the signature scheme, it is possible
for the developers using this library to use a check similar to the one performed in libsodium5.

3 https://github.com/dalek-cryptography/curve25519-dalek/issues/9
4 https://github.com/dalek-cryptography/ed25519-dalek/issues/20
5 See for example https://github.com/jedisct1/libsodium/commit/4099618de2cce5099ac2ec5ce8f2d80f4585606e.

Ref.: 19-06-594-REP Quarkslab SAS 38

https://github.com/dalek-cryptography/ed25519-dalek/tree/1.0.0-pre.1#a-note-on-signature-malleability
https://github.com/dalek-cryptography/curve25519-dalek/issues/9
https://github.com/dalek-cryptography/ed25519-dalek/issues/20
https://github.com/jedisct1/libsodium/commit/4099618de2cce5099ac2ec5ce8f2d80f4585606e

Public

8. Conclusion
This report summarizes the audit on the subtle, curve25519-dalek and bulletproofs libraries, as
well as a more marginal audit of the x25519-dalek and ed25519-dalek libraries. The choice of
Rust as a language probably avoided most common problems that may have been found in an
implementation with a language such as C. The different projects as well as their code are thor-
oughly documented. This allows any interested party to validate the implementation choices.
However, some issues have been found. Some recommendations have also been formulated to
improve the library and its usage by the dependent libraries. It is important to note that some
tests are non-deterministic (using randomness seeded at runtime) and may reduce their repro-
ducibility. However this also makes it possible to cover a larger variety of inputs across time.
We recommend at least to output the seed used during a failed test to enable easier debugging.
These libraries include some mitigations against side-channel attacks, such as constant time
operations with linear code and constant memory access. These mitigations are only provided
on a best-effort basis and are limited by their scope: hardware issues or updates on the nightly
version of the Rust compiler may compromise them (such as unintended new optimizations or
features that lead to a code no longer being constant time after compilation). However, the
libraries do their best to avoid such mitigation breaks by using some features of the compiler. We
recommend nonetheless to add additional tests to check for unexpected regressions of mitigations
between unstable versions and to periodically check the desired properties on samples of the
compiled assembly. We also recommend to use a stable version of the Rust compiler when the
required features become stable.

Ref.: 19-06-594-REP Quarkslab SAS 39

Public

9. Bibliography
[Aum] J.-P. Aumasson, Should Curve25519 keys be validated?, April 25, 2017. https:

//research.kudelskisecurity.com/2017/04/25/should-ecdh-keys-be-validated/
[Ber] D. J. Bernstein, Curve25519: New Diffie-Hellman Speed Records, PKC 2006, pages

207–228. https://cr.yp.to/ecdh/curve25519-20060209.pdf
[Bul] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille and G. Maxwell, Bulletproofs:

Short Proofs for Confidential Transactions and More, IEEE Symposium on Security
and Privacy 2018, https://eprint.iacr.org/2017/1066 (version of the 1st of July, 2018)
and https://crypto.stanford.edu/bulletproofs/

[ECS] A. Langley, M. Hamburg and S. Turner, Elliptic Curves for Security, IETF RCF 7748,
January 2016. https://tools.ietf.org/html/rfc7748

[EdDSA] S. Josefsson and I. Liusvaara, Edwards-Curve Digital Signature Algorithm (EdDSA),
IETF RFC 8032, January 2017. https://tools.ietf.org/html/rfc8032

[GVY] D. Genkin, L. Valenta and Yuval Yarom, May the Fourth Be With You: A Microarchi-
tectural Side Channel Attack on Several Real-World Applications of Curve25519, Con-
ference on Computer and Communications Security, pages 845–858. https://eprint.
iacr.org/2017/806

[Ham] M. Hamburg, Decaf: Eliminating Cofactors Through Point Compression, CRYPTO
2015, pages 705–723. https://eprint.iacr.org/2015/673

[Per] T. Perrin, The XEdDSA and VXEdDSA Signature Schemes, October 20, 2016. https:
//signal.org/docs/specifications/xeddsa

[Ris] H. de Valence, J. Grigg, G. Tankersley, F. Valsorda and I. Lovecruft, The ristretto255
Group, May 8, 2019. https://datatracker.ietf.org/doc/draft-hdevalence-cfrg-ristretto

[TRG] H. de Valence, I. Lovecruft and T. Arcieri, The Ristretto Group. https://ristretto.
group/

Ref.: 19-06-594-REP Quarkslab SAS 40

https://research.kudelskisecurity.com/2017/04/25/should-ecdh-keys-be-validated/
https://research.kudelskisecurity.com/2017/04/25/should-ecdh-keys-be-validated/
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://eprint.iacr.org/2017/1066
https://crypto.stanford.edu/bulletproofs/
https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc8032
https://eprint.iacr.org/2017/806
https://eprint.iacr.org/2017/806
https://eprint.iacr.org/2015/673
https://signal.org/docs/specifications/xeddsa
https://signal.org/docs/specifications/xeddsa
https://datatracker.ietf.org/doc/draft-hdevalence-cfrg-ristretto
https://ristretto.group/
https://ristretto.group/

	Project Information
	Executive Summary
	Context
	Methodology
	Chronology
	Report synthesis
	Synthesis
	Issues and recommendations

	Code overview
	Audited versions
	Dependencies
	The subtle library
	The curve25519-dalek library
	The bulletproofs library

	The subtle library
	Introduction
	Code review and constant time validation
	Code review
	Constant time validation
	Inlining optimizations

	Conclusion

	The curve25519-dalek library
	Code Review
	u64 back-end
	avx2 back-end
	Curve Points
	Serialization
	Constant Time

	Issues
	Overflow in Scalar52
	Optimizations

	Conclusion

	The bulletproofs library
	Purpose
	Protocol
	Build a proof
	Verify a proof

	Code review
	State machine
	Message serialization
	Constant Time

	Issues
	ProofShare panic
	Optimizations and recommendations

	Conclusion

	The x25519-dalek and ed25519-dalek libraries
	The x25519-dalek library
	Dependencies
	Public key validation

	The ed25519-dalek library
	Dependencies
	Notes on the usage

	Conclusion
	Bibliography

